1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# abstract syntax tree + symbol table
import
lineinfos, options, ropes, idents, int128, wordrecg
import std/[tables, hashes]
from std/strutils import toLowerAscii
when defined(nimPreviewSlimSystem):
import std/assertions
export int128
import nodekinds
export nodekinds
type
TCallingConvention* = enum
ccNimCall = "nimcall" # nimcall, also the default
ccStdCall = "stdcall" # procedure is stdcall
ccCDecl = "cdecl" # cdecl
ccSafeCall = "safecall" # safecall
ccSysCall = "syscall" # system call
ccInline = "inline" # proc should be inlined
ccNoInline = "noinline" # proc should not be inlined
ccFastCall = "fastcall" # fastcall (pass parameters in registers)
ccThisCall = "thiscall" # thiscall (parameters are pushed right-to-left)
ccClosure = "closure" # proc has a closure
ccNoConvention = "noconv" # needed for generating proper C procs sometimes
ccMember = "member" # proc is a (cpp) member
TNodeKinds* = set[TNodeKind]
type
TSymFlag* = enum # 63 flags!
sfUsed, # read access of sym (for warnings) or simply used
sfExported, # symbol is exported from module
sfFromGeneric, # symbol is instantiation of a generic; this is needed
# for symbol file generation; such symbols should always
# be written into the ROD file
sfGlobal, # symbol is at global scope
sfForward, # symbol is forward declared
sfWasForwarded, # symbol had a forward declaration
# (implies it's too dangerous to patch its type signature)
sfImportc, # symbol is external; imported
sfExportc, # symbol is exported (under a specified name)
sfMangleCpp, # mangle as cpp (combines with `sfExportc`)
sfVolatile, # variable is volatile
sfRegister, # variable should be placed in a register
sfPure, # object is "pure" that means it has no type-information
# enum is "pure", its values need qualified access
# variable is "pure"; it's an explicit "global"
sfNoSideEffect, # proc has no side effects
sfSideEffect, # proc may have side effects; cannot prove it has none
sfMainModule, # module is the main module
sfSystemModule, # module is the system module
sfNoReturn, # proc never returns (an exit proc)
sfAddrTaken, # the variable's address is taken (ex- or implicitly);
# *OR*: a proc is indirectly called (used as first class)
sfCompilerProc, # proc is a compiler proc, that is a C proc that is
# needed for the code generator
sfEscapes # param escapes
# currently unimplemented
sfDiscriminant, # field is a discriminant in a record/object
sfRequiresInit, # field must be initialized during construction
sfDeprecated, # symbol is deprecated
sfExplain, # provide more diagnostics when this symbol is used
sfError, # usage of symbol should trigger a compile-time error
sfShadowed, # a symbol that was shadowed in some inner scope
sfThread, # proc will run as a thread
# variable is a thread variable
sfCppNonPod, # tells compiler to treat such types as non-pod's, so that
# `thread_local` is used instead of `__thread` for
# {.threadvar.} + `--threads`. Only makes sense for importcpp types.
# This has a performance impact so isn't set by default.
sfCompileTime, # proc can be evaluated at compile time
sfConstructor, # proc is a C++ constructor
sfDispatcher, # copied method symbol is the dispatcher
# deprecated and unused, except for the con
sfBorrow, # proc is borrowed
sfInfixCall, # symbol needs infix call syntax in target language;
# for interfacing with C++, JS
sfNamedParamCall, # symbol needs named parameter call syntax in target
# language; for interfacing with Objective C
sfDiscardable, # returned value may be discarded implicitly
sfOverridden, # proc is overridden
sfCallsite # A flag for template symbols to tell the
# compiler it should use line information from
# the calling side of the macro, not from the
# implementation.
sfGenSym # symbol is 'gensym'ed; do not add to symbol table
sfNonReloadable # symbol will be left as-is when hot code reloading is on -
# meaning that it won't be renamed and/or changed in any way
sfGeneratedOp # proc is a generated '='; do not inject destructors in it
# variable is generated closure environment; requires early
# destruction for --newruntime.
sfTemplateParam # symbol is a template parameter
sfCursor # variable/field is a cursor, see RFC 177 for details
sfInjectDestructors # whether the proc needs the 'injectdestructors' transformation
sfNeverRaises # proc can never raise an exception, not even OverflowDefect
# or out-of-memory
sfSystemRaisesDefect # proc in the system can raise defects
sfUsedInFinallyOrExcept # symbol is used inside an 'except' or 'finally'
sfSingleUsedTemp # For temporaries that we know will only be used once
sfNoalias # 'noalias' annotation, means C's 'restrict'
# for templates and macros, means cannot be called
# as a lone symbol (cannot use alias syntax)
sfEffectsDelayed # an 'effectsDelayed' parameter
sfGeneratedType # A anonymous generic type that is generated by the compiler for
# objects that do not have generic parameters in case one of the
# object fields has one.
#
# This is disallowed but can cause the typechecking to go into
# an infinite loop, this flag is used as a sentinel to stop it.
sfVirtual # proc is a C++ virtual function
sfByCopy # param is marked as pass bycopy
sfMember # proc is a C++ member of a type
sfCodegenDecl # type, proc, global or proc param is marked as codegenDecl
sfWasGenSym # symbol was 'gensym'ed
sfForceLift # variable has to be lifted into closure environment
sfDirty # template is not hygienic (old styled template) module,
# compiled from a dirty-buffer
sfCustomPragma # symbol is custom pragma template
sfBase, # a base method
sfGoto # var is used for 'goto' code generation
sfAnon, # symbol name that was generated by the compiler
# the compiler will avoid printing such names
# in user messages.
sfAllUntyped # macro or template is immediately expanded in a generic context
sfTemplateRedefinition # symbol is a redefinition of an earlier template
TSymFlags* = set[TSymFlag]
const
sfNoInit* = sfMainModule # don't generate code to init the variable
sfNoForward* = sfRegister
# forward declarations are not required (per module)
sfReorder* = sfForward
# reordering pass is enabled
sfCompileToCpp* = sfInfixCall # compile the module as C++ code
sfCompileToObjc* = sfNamedParamCall # compile the module as Objective-C code
sfExperimental* = sfOverridden # module uses the .experimental switch
sfWrittenTo* = sfBorrow # param is assigned to
# currently unimplemented
sfCppMember* = { sfVirtual, sfMember, sfConstructor } # proc is a C++ member, meaning it will be attached to the type definition
const
# getting ready for the future expr/stmt merge
nkWhen* = nkWhenStmt
nkWhenExpr* = nkWhenStmt
nkEffectList* = nkArgList
# hacks ahead: an nkEffectList is a node with 4 children:
exceptionEffects* = 0 # exceptions at position 0
requiresEffects* = 1 # 'requires' annotation
ensuresEffects* = 2 # 'ensures' annotation
tagEffects* = 3 # user defined tag ('gc', 'time' etc.)
pragmasEffects* = 4 # not an effect, but a slot for pragmas in proc type
forbiddenEffects* = 5 # list of illegal effects
effectListLen* = 6 # list of effects list
nkLastBlockStmts* = {nkRaiseStmt, nkReturnStmt, nkBreakStmt, nkContinueStmt}
# these must be last statements in a block
type
TTypeKind* = enum # order is important!
# Don't forget to change hti.nim if you make a change here
# XXX put this into an include file to avoid this issue!
# several types are no longer used (guess which), but a
# spot in the sequence is kept for backwards compatibility
# (apparently something with bootstrapping)
# if you need to add a type, they can apparently be reused
tyNone, tyBool, tyChar,
tyEmpty, tyAlias, tyNil, tyUntyped, tyTyped, tyTypeDesc,
tyGenericInvocation, # ``T[a, b]`` for types to invoke
tyGenericBody, # ``T[a, b, body]`` last parameter is the body
tyGenericInst, # ``T[a, b, realInstance]`` instantiated generic type
# realInstance will be a concrete type like tyObject
# unless this is an instance of a generic alias type.
# then realInstance will be the tyGenericInst of the
# completely (recursively) resolved alias.
tyGenericParam, # ``a`` in the above patterns
tyDistinct,
tyEnum,
tyOrdinal, # integer types (including enums and boolean)
tyArray,
tyObject,
tyTuple,
tySet,
tyRange,
tyPtr, tyRef,
tyVar,
tySequence,
tyProc,
tyPointer, tyOpenArray,
tyString, tyCstring, tyForward,
tyInt, tyInt8, tyInt16, tyInt32, tyInt64, # signed integers
tyFloat, tyFloat32, tyFloat64, tyFloat128,
tyUInt, tyUInt8, tyUInt16, tyUInt32, tyUInt64,
tyOwned, tySink, tyLent,
tyVarargs,
tyUncheckedArray
# An array with boundaries [0,+∞]
tyError # used as erroneous type (for idetools)
# as an erroneous node should match everything
tyBuiltInTypeClass
# Type such as the catch-all object, tuple, seq, etc
tyUserTypeClass
# the body of a user-defined type class
tyUserTypeClassInst
# Instance of a parametric user-defined type class.
# Structured similarly to tyGenericInst.
# tyGenericInst represents concrete types, while
# this is still a "generic param" that will bind types
# and resolves them during sigmatch and instantiation.
tyCompositeTypeClass
# Type such as seq[Number]
# The notes for tyUserTypeClassInst apply here as well
# sons[0]: the original expression used by the user.
# sons[1]: fully expanded and instantiated meta type
# (potentially following aliases)
tyInferred
# In the initial state `base` stores a type class constraining
# the types that can be inferred. After a candidate type is
# selected, it's stored in `last`. Between `base` and `last`
# there may be 0, 2 or more types that were also considered as
# possible candidates in the inference process (i.e. last will
# be updated to store a type best conforming to all candidates)
tyAnd, tyOr, tyNot
# boolean type classes such as `string|int`,`not seq`,
# `Sortable and Enumable`, etc
tyAnything
# a type class matching any type
tyStatic
# a value known at compile type (the underlying type is .base)
tyFromExpr
# This is a type representing an expression that depends
# on generic parameters (the expression is stored in t.n)
# It will be converted to a real type only during generic
# instantiation and prior to this it has the potential to
# be any type.
tyConcept
# new style concept.
tyVoid
# now different from tyEmpty, hurray!
tyIterable
static:
# remind us when TTypeKind stops to fit in a single 64-bit word
# assert TTypeKind.high.ord <= 63
discard
const
tyPureObject* = tyTuple
GcTypeKinds* = {tyRef, tySequence, tyString}
tyTypeClasses* = {tyBuiltInTypeClass, tyCompositeTypeClass,
tyUserTypeClass, tyUserTypeClassInst,
tyAnd, tyOr, tyNot, tyAnything}
tyMetaTypes* = {tyGenericParam, tyTypeDesc, tyUntyped} + tyTypeClasses
tyUserTypeClasses* = {tyUserTypeClass, tyUserTypeClassInst}
# consider renaming as `tyAbstractVarRange`
abstractVarRange* = {tyGenericInst, tyRange, tyVar, tyDistinct, tyOrdinal,
tyTypeDesc, tyAlias, tyInferred, tySink, tyOwned}
abstractInst* = {tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc, tyAlias,
tyInferred, tySink, tyOwned} # xxx what about tyStatic?
type
TTypeKinds* = set[TTypeKind]
TNodeFlag* = enum
nfNone,
nfBase2, # nfBase10 is default, so not needed
nfBase8,
nfBase16,
nfAllConst, # used to mark complex expressions constant; easy to get rid of
# but unfortunately it has measurable impact for compilation
# efficiency
nfTransf, # node has been transformed
nfNoRewrite # node should not be transformed anymore
nfSem # node has been checked for semantics
nfLL # node has gone through lambda lifting
nfDotField # the call can use a dot operator
nfDotSetter # the call can use a setter dot operarator
nfExplicitCall # x.y() was used instead of x.y
nfExprCall # this is an attempt to call a regular expression
nfIsRef # this node is a 'ref' node; used for the VM
nfIsPtr # this node is a 'ptr' node; used for the VM
nfPreventCg # this node should be ignored by the codegen
nfBlockArg # this a stmtlist appearing in a call (e.g. a do block)
nfFromTemplate # a top-level node returned from a template
nfDefaultParam # an automatically inserter default parameter
nfDefaultRefsParam # a default param value references another parameter
# the flag is applied to proc default values and to calls
nfExecuteOnReload # A top-level statement that will be executed during reloads
nfLastRead # this node is a last read
nfFirstWrite # this node is a first write
nfHasComment # node has a comment
nfSkipFieldChecking # node skips field visable checking
nfDisabledOpenSym # temporary: node should be nkOpenSym but cannot
# because openSym experimental switch is disabled
# gives warning instead
TNodeFlags* = set[TNodeFlag]
TTypeFlag* = enum # keep below 32 for efficiency reasons (now: 47)
tfVarargs, # procedure has C styled varargs
# tyArray type represeting a varargs list
tfNoSideEffect, # procedure type does not allow side effects
tfFinal, # is the object final?
tfInheritable, # is the object inheritable?
tfHasOwned, # type contains an 'owned' type and must be moved
tfEnumHasHoles, # enum cannot be mapped into a range
tfShallow, # type can be shallow copied on assignment
tfThread, # proc type is marked as ``thread``; alias for ``gcsafe``
tfFromGeneric, # type is an instantiation of a generic; this is needed
# because for instantiations of objects, structural
# type equality has to be used
tfUnresolved, # marks unresolved typedesc/static params: e.g.
# proc foo(T: typedesc, list: seq[T]): var T
# proc foo(L: static[int]): array[L, int]
# can be attached to ranges to indicate that the range
# can be attached to generic procs with free standing
# type parameters: e.g. proc foo[T]()
# depends on unresolved static params.
tfResolved # marks a user type class, after it has been bound to a
# concrete type (lastSon becomes the concrete type)
tfRetType, # marks return types in proc (used to detect type classes
# used as return types for return type inference)
tfCapturesEnv, # whether proc really captures some environment
tfByCopy, # pass object/tuple by copy (C backend)
tfByRef, # pass object/tuple by reference (C backend)
tfIterator, # type is really an iterator, not a tyProc
tfPartial, # type is declared as 'partial'
tfNotNil, # type cannot be 'nil'
tfRequiresInit, # type contains a "not nil" constraint somewhere or
# a `requiresInit` field, so the default zero init
# is not appropriate
tfNeedsFullInit, # object type marked with {.requiresInit.}
# all fields must be initialized
tfVarIsPtr, # 'var' type is translated like 'ptr' even in C++ mode
tfHasMeta, # type contains "wildcard" sub-types such as generic params
# or other type classes
tfHasGCedMem, # type contains GC'ed memory
tfPacked
tfHasStatic
tfGenericTypeParam
tfImplicitTypeParam
tfInferrableStatic
tfConceptMatchedTypeSym
tfExplicit # for typedescs, marks types explicitly prefixed with the
# `type` operator (e.g. type int)
tfWildcard # consider a proc like foo[T, I](x: Type[T, I])
# T and I here can bind to both typedesc and static types
# before this is determined, we'll consider them to be a
# wildcard type.
tfHasAsgn # type has overloaded assignment operator
tfBorrowDot # distinct type borrows '.'
tfTriggersCompileTime # uses the NimNode type which make the proc
# implicitly '.compiletime'
tfRefsAnonObj # used for 'ref object' and 'ptr object'
tfCovariant # covariant generic param mimicking a ptr type
tfWeakCovariant # covariant generic param mimicking a seq/array type
tfContravariant # contravariant generic param
tfCheckedForDestructor # type was checked for having a destructor.
# If it has one, t.destructor is not nil.
tfAcyclic # object type was annotated as .acyclic
tfIncompleteStruct # treat this type as if it had sizeof(pointer)
tfCompleteStruct
# (for importc types); type is fully specified, allowing to compute
# sizeof, alignof, offsetof at CT
tfExplicitCallConv
tfIsConstructor
tfEffectSystemWorkaround
tfIsOutParam
tfSendable
tfImplicitStatic
TTypeFlags* = set[TTypeFlag]
TSymKind* = enum # the different symbols (start with the prefix sk);
# order is important for the documentation generator!
skUnknown, # unknown symbol: used for parsing assembler blocks
# and first phase symbol lookup in generics
skConditional, # symbol for the preprocessor (may become obsolete)
skDynLib, # symbol represents a dynamic library; this is used
# internally; it does not exist in Nim code
skParam, # a parameter
skGenericParam, # a generic parameter; eq in ``proc x[eq=`==`]()``
skTemp, # a temporary variable (introduced by compiler)
skModule, # module identifier
skType, # a type
skVar, # a variable
skLet, # a 'let' symbol
skConst, # a constant
skResult, # special 'result' variable
skProc, # a proc
skFunc, # a func
skMethod, # a method
skIterator, # an iterator
skConverter, # a type converter
skMacro, # a macro
skTemplate, # a template; currently also misused for user-defined
# pragmas
skField, # a field in a record or object
skEnumField, # an identifier in an enum
skForVar, # a for loop variable
skLabel, # a label (for block statement)
skStub, # symbol is a stub and not yet loaded from the ROD
# file (it is loaded on demand, which may
# mean: never)
skPackage, # symbol is a package (used for canonicalization)
TSymKinds* = set[TSymKind]
const
routineKinds* = {skProc, skFunc, skMethod, skIterator,
skConverter, skMacro, skTemplate}
ExportableSymKinds* = {skVar, skLet, skConst, skType, skEnumField, skStub} + routineKinds
tfUnion* = tfNoSideEffect
tfGcSafe* = tfThread
tfObjHasKids* = tfEnumHasHoles
tfReturnsNew* = tfInheritable
tfNonConstExpr* = tfExplicitCallConv
## tyFromExpr where the expression shouldn't be evaluated as a static value
skError* = skUnknown
var
eqTypeFlags* = {tfIterator, tfNotNil, tfVarIsPtr, tfGcSafe, tfNoSideEffect, tfIsOutParam}
## type flags that are essential for type equality.
## This is now a variable because for emulation of version:1.0 we
## might exclude {tfGcSafe, tfNoSideEffect}.
type
TMagic* = enum # symbols that require compiler magic:
mNone,
mDefined, mDeclared, mDeclaredInScope, mCompiles, mArrGet, mArrPut, mAsgn,
mLow, mHigh, mSizeOf, mAlignOf, mOffsetOf, mTypeTrait,
mIs, mOf, mAddr, mType, mTypeOf,
mPlugin, mEcho, mShallowCopy, mSlurp, mStaticExec, mStatic,
mParseExprToAst, mParseStmtToAst, mExpandToAst, mQuoteAst,
mInc, mDec, mOrd,
mNew, mNewFinalize, mNewSeq, mNewSeqOfCap,
mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq,
mIncl, mExcl, mCard, mChr,
mGCref, mGCunref,
mAddI, mSubI, mMulI, mDivI, mModI,
mSucc, mPred,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mAshrI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mLePtr, mLtPtr,
mXor, mEqCString, mEqProc,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot,
mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mImplies, mIff, mExists, mForall, mOld,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet,
mConStrStr, mSlice,
mDotDot, # this one is only necessary to give nice compile time warnings
mFields, mFieldPairs, mOmpParFor,
mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mExit,
mSetLengthStr, mSetLengthSeq,
mIsPartOf, mAstToStr, mParallel,
mSwap, mIsNil, mArrToSeq, mOpenArrayToSeq,
mNewString, mNewStringOfCap, mParseBiggestFloat,
mMove, mEnsureMove, mWasMoved, mDup, mDestroy, mTrace,
mDefault, mUnown, mFinished, mIsolate, mAccessEnv, mAccessTypeField,
mArray, mOpenArray, mRange, mSet, mSeq, mVarargs,
mRef, mPtr, mVar, mDistinct, mVoid, mTuple,
mOrdinal, mIterableType,
mInt, mInt8, mInt16, mInt32, mInt64,
mUInt, mUInt8, mUInt16, mUInt32, mUInt64,
mFloat, mFloat32, mFloat64, mFloat128,
mBool, mChar, mString, mCstring,
mPointer, mNil, mExpr, mStmt, mTypeDesc,
mVoidType, mPNimrodNode, mSpawn, mDeepCopy,
mIsMainModule, mCompileDate, mCompileTime, mProcCall,
mCpuEndian, mHostOS, mHostCPU, mBuildOS, mBuildCPU, mAppType,
mCompileOption, mCompileOptionArg,
mNLen, mNChild, mNSetChild, mNAdd, mNAddMultiple, mNDel,
mNKind, mNSymKind,
mNccValue, mNccInc, mNcsAdd, mNcsIncl, mNcsLen, mNcsAt,
mNctPut, mNctLen, mNctGet, mNctHasNext, mNctNext,
mNIntVal, mNFloatVal, mNSymbol, mNIdent, mNGetType, mNStrVal, mNSetIntVal,
mNSetFloatVal, mNSetSymbol, mNSetIdent, mNSetStrVal, mNLineInfo,
mNNewNimNode, mNCopyNimNode, mNCopyNimTree, mStrToIdent, mNSigHash, mNSizeOf,
mNBindSym, mNCallSite,
mEqIdent, mEqNimrodNode, mSameNodeType, mGetImpl, mNGenSym,
mNHint, mNWarning, mNError,
mInstantiationInfo, mGetTypeInfo, mGetTypeInfoV2,
mNimvm, mIntDefine, mStrDefine, mBoolDefine, mGenericDefine, mRunnableExamples,
mException, mBuiltinType, mSymOwner, mUncheckedArray, mGetImplTransf,
mSymIsInstantiationOf, mNodeId, mPrivateAccess, mZeroDefault
const
# things that we can evaluate safely at compile time, even if not asked for it:
ctfeWhitelist* = {mNone, mSucc,
mPred, mInc, mDec, mOrd, mLengthOpenArray,
mLengthStr, mLengthArray, mLengthSeq,
mArrGet, mArrPut, mAsgn, mDestroy,
mIncl, mExcl, mCard, mChr,
mAddI, mSubI, mMulI, mDivI, mModI,
mAddF64, mSubF64, mMulF64, mDivF64,
mShrI, mShlI, mBitandI, mBitorI, mBitxorI,
mMinI, mMaxI,
mAddU, mSubU, mMulU, mDivU, mModU,
mEqI, mLeI, mLtI,
mEqF64, mLeF64, mLtF64,
mLeU, mLtU,
mEqEnum, mLeEnum, mLtEnum,
mEqCh, mLeCh, mLtCh,
mEqB, mLeB, mLtB,
mEqRef, mEqProc, mLePtr, mLtPtr, mEqCString, mXor,
mUnaryMinusI, mUnaryMinusI64, mAbsI, mNot, mUnaryPlusI, mBitnotI,
mUnaryPlusF64, mUnaryMinusF64,
mCharToStr, mBoolToStr,
mCStrToStr,
mStrToStr, mEnumToStr,
mAnd, mOr,
mEqStr, mLeStr, mLtStr,
mEqSet, mLeSet, mLtSet, mMulSet, mPlusSet, mMinusSet,
mConStrStr, mAppendStrCh, mAppendStrStr, mAppendSeqElem,
mInSet, mRepr, mOpenArrayToSeq}
generatedMagics* = {mNone, mIsolate, mFinished, mOpenArrayToSeq}
## magics that are generated as normal procs in the backend
type
ItemId* = object
module*: int32
item*: int32
proc `$`*(x: ItemId): string =
"(module: " & $x.module & ", item: " & $x.item & ")"
proc `==`*(a, b: ItemId): bool {.inline.} =
a.item == b.item and a.module == b.module
proc hash*(x: ItemId): Hash =
var h: Hash = hash(x.module)
h = h !& hash(x.item)
result = !$h
type
PNode* = ref TNode
TNodeSeq* = seq[PNode]
PType* = ref TType
PSym* = ref TSym
TNode*{.final, acyclic.} = object # on a 32bit machine, this takes 32 bytes
when defined(useNodeIds):
id*: int
typ*: PType
info*: TLineInfo
flags*: TNodeFlags
case kind*: TNodeKind
of nkCharLit..nkUInt64Lit:
intVal*: BiggestInt
of nkFloatLit..nkFloat128Lit:
floatVal*: BiggestFloat
of nkStrLit..nkTripleStrLit:
strVal*: string
of nkSym:
sym*: PSym
of nkIdent:
ident*: PIdent
else:
sons*: TNodeSeq
when defined(nimsuggest):
endInfo*: TLineInfo
TStrTable* = object # a table[PIdent] of PSym
counter*: int
data*: seq[PSym]
# -------------- backend information -------------------------------
TLocKind* = enum
locNone, # no location
locTemp, # temporary location
locLocalVar, # location is a local variable
locGlobalVar, # location is a global variable
locParam, # location is a parameter
locField, # location is a record field
locExpr, # "location" is really an expression
locProc, # location is a proc (an address of a procedure)
locData, # location is a constant
locCall, # location is a call expression
locOther # location is something other
TLocFlag* = enum
lfIndirect, # backend introduced a pointer
lfNoDeepCopy, # no need for a deep copy
lfNoDecl, # do not declare it in C
lfDynamicLib, # link symbol to dynamic library
lfExportLib, # export symbol for dynamic library generation
lfHeader, # include header file for symbol
lfImportCompilerProc, # ``importc`` of a compilerproc
lfSingleUse # no location yet and will only be used once
lfEnforceDeref # a copyMem is required to dereference if this a
# ptr array due to C array limitations.
# See #1181, #6422, #11171
lfPrepareForMutation # string location is about to be mutated (V2)
TStorageLoc* = enum
OnUnknown, # location is unknown (stack, heap or static)
OnStatic, # in a static section
OnStack, # location is on hardware stack
OnHeap # location is on heap or global
# (reference counting needed)
TLocFlags* = set[TLocFlag]
TLoc* = object
k*: TLocKind # kind of location
storage*: TStorageLoc
flags*: TLocFlags # location's flags
lode*: PNode # Node where the location came from; can be faked
snippet*: Rope # C code snippet of location (code generators)
# ---------------- end of backend information ------------------------------
TLibKind* = enum
libHeader, libDynamic
TLib* = object # also misused for headers!
# keep in sync with PackedLib
kind*: TLibKind
generated*: bool # needed for the backends:
isOverridden*: bool
name*: Rope
path*: PNode # can be a string literal!
CompilesId* = int ## id that is used for the caching logic within
## ``system.compiles``. See the seminst module.
TInstantiation* = object
sym*: PSym
concreteTypes*: seq[PType]
compilesId*: CompilesId
PInstantiation* = ref TInstantiation
TScope* {.acyclic.} = object
depthLevel*: int
symbols*: TStrTable
parent*: PScope
allowPrivateAccess*: seq[PSym] # # enable access to private fields
PScope* = ref TScope
PLib* = ref TLib
TSym* {.acyclic.} = object # Keep in sync with PackedSym
itemId*: ItemId
# proc and type instantiations are cached in the generic symbol
case kind*: TSymKind
of routineKinds:
#procInstCache*: seq[PInstantiation]
gcUnsafetyReason*: PSym # for better error messages regarding gcsafe
transformedBody*: PNode # cached body after transf pass
of skLet, skVar, skField, skForVar:
guard*: PSym
bitsize*: int
alignment*: int # for alignment
else: nil
magic*: TMagic
typ*: PType
name*: PIdent
info*: TLineInfo
when defined(nimsuggest):
endInfo*: TLineInfo
hasUserSpecifiedType*: bool # used for determining whether to display inlay type hints
owner*: PSym
flags*: TSymFlags
ast*: PNode # syntax tree of proc, iterator, etc.:
# the whole proc including header; this is used
# for easy generation of proper error messages
# for variant record fields the discriminant
# expression
# for modules, it's a placeholder for compiler
# generated code that will be appended to the
# module after the sem pass (see appendToModule)
options*: TOptions
position*: int # used for many different things:
# for enum fields its position;
# for fields its offset
# for parameters its position (starting with 0)
# for a conditional:
# 1 iff the symbol is defined, else 0
# (or not in symbol table)
# for modules, an unique index corresponding
# to the module's fileIdx
# for variables a slot index for the evaluator
offset*: int32 # offset of record field
disamb*: int32 # disambiguation number; the basic idea is that
# `<procname>__<module>_<disamb>` is unique
loc*: TLoc
annex*: PLib # additional fields (seldom used, so we use a
# reference to another object to save space)
when hasFFI:
cname*: string # resolved C declaration name in importc decl, e.g.:
# proc fun() {.importc: "$1aux".} => cname = funaux
constraint*: PNode # additional constraints like 'lit|result'; also
# misused for the codegenDecl and virtual pragmas in the hope
# it won't cause problems
# for skModule the string literal to output for
# deprecated modules.
instantiatedFrom*: PSym # for instances, the generic symbol where it came from.
when defined(nimsuggest):
allUsages*: seq[TLineInfo]
TTypeSeq* = seq[PType]
TTypeAttachedOp* = enum ## as usual, order is important here
attachedWasMoved,
attachedDestructor,
attachedAsgn,
attachedDup,
attachedSink,
attachedTrace,
attachedDeepCopy
TType* {.acyclic.} = object # \
# types are identical iff they have the
# same id; there may be multiple copies of a type
# in memory!
# Keep in sync with PackedType
itemId*: ItemId
kind*: TTypeKind # kind of type
callConv*: TCallingConvention # for procs
flags*: TTypeFlags # flags of the type
sons: TTypeSeq # base types, etc.
n*: PNode # node for types:
# for range types a nkRange node
# for record types a nkRecord node
# for enum types a list of symbols
# if kind == tyInt: it is an 'int literal(x)' type
# for procs and tyGenericBody, it's the
# formal param list
# for concepts, the concept body
# else: unused
owner*: PSym # the 'owner' of the type
sym*: PSym # types have the sym associated with them
# it is used for converting types to strings
size*: BiggestInt # the size of the type in bytes
# -1 means that the size is unkwown
align*: int16 # the type's alignment requirements
paddingAtEnd*: int16 #
loc*: TLoc
typeInst*: PType # for generic instantiations the tyGenericInst that led to this
# type.
uniqueId*: ItemId # due to a design mistake, we need to keep the real ID here as it
# is required by the --incremental:on mode.
TPair* = object
key*, val*: RootRef
TPairSeq* = seq[TPair]
TNodePair* = object
h*: Hash # because it is expensive to compute!
key*: PNode
val*: int
TNodePairSeq* = seq[TNodePair]
TNodeTable* = object # the same as table[PNode] of int;
# nodes are compared by structure!
counter*: int
data*: TNodePairSeq
TObjectSeq* = seq[RootRef]
TObjectSet* = object
counter*: int
data*: TObjectSeq
TImplication* = enum
impUnknown, impNo, impYes
template nodeId(n: PNode): int = cast[int](n)
type Gconfig = object
# we put comments in a side channel to avoid increasing `sizeof(TNode)`, which
# reduces memory usage given that `PNode` is the most allocated type by far.
comments: Table[int, string] # nodeId => comment
useIc*: bool
var gconfig {.threadvar.}: Gconfig
proc setUseIc*(useIc: bool) = gconfig.useIc = useIc
proc comment*(n: PNode): string =
if nfHasComment in n.flags and not gconfig.useIc:
# IC doesn't track comments, see `packed_ast`, so this could fail
result = gconfig.comments[n.nodeId]
else:
result = ""
proc `comment=`*(n: PNode, a: string) =
let id = n.nodeId
if a.len > 0:
# if needed, we could periodically cleanup gconfig.comments when its size increases,
# to ensure only live nodes (and with nfHasComment) have an entry in gconfig.comments;
# for compiling compiler, the waste is very small:
# num calls to newNodeImpl: 14984160 (num of PNode allocations)
# size of gconfig.comments: 33585
# num of nodes with comments that were deleted and hence wasted: 3081
n.flags.incl nfHasComment
gconfig.comments[id] = a
elif nfHasComment in n.flags:
n.flags.excl nfHasComment
gconfig.comments.del(id)
# BUGFIX: a module is overloadable so that a proc can have the
# same name as an imported module. This is necessary because of
# the poor naming choices in the standard library.
const
OverloadableSyms* = {skProc, skFunc, skMethod, skIterator,
skConverter, skModule, skTemplate, skMacro, skEnumField}
GenericTypes*: TTypeKinds = {tyGenericInvocation, tyGenericBody,
tyGenericParam}
StructuralEquivTypes*: TTypeKinds = {tyNil, tyTuple, tyArray,
tySet, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc, tyOpenArray,
tyVarargs}
ConcreteTypes*: TTypeKinds = { # types of the expr that may occur in::
# var x = expr
tyBool, tyChar, tyEnum, tyArray, tyObject,
tySet, tyTuple, tyRange, tyPtr, tyRef, tyVar, tyLent, tySequence, tyProc,
tyPointer,
tyOpenArray, tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64}
IntegralTypes* = {tyBool, tyChar, tyEnum, tyInt..tyInt64,
tyFloat..tyFloat128, tyUInt..tyUInt64} # weird name because it contains tyFloat
ConstantDataTypes*: TTypeKinds = {tyArray, tySet,
tyTuple, tySequence}
NilableTypes*: TTypeKinds = {tyPointer, tyCstring, tyRef, tyPtr,
tyProc, tyError} # TODO
PtrLikeKinds*: TTypeKinds = {tyPointer, tyPtr} # for VM
PersistentNodeFlags*: TNodeFlags = {nfBase2, nfBase8, nfBase16,
nfDotSetter, nfDotField,
nfIsRef, nfIsPtr, nfPreventCg, nfLL,
nfFromTemplate, nfDefaultRefsParam,
nfExecuteOnReload, nfLastRead,
nfFirstWrite, nfSkipFieldChecking,
nfDisabledOpenSym}
namePos* = 0
patternPos* = 1 # empty except for term rewriting macros
genericParamsPos* = 2
paramsPos* = 3
pragmasPos* = 4
miscPos* = 5 # used for undocumented and hacky stuff
bodyPos* = 6 # position of body; use rodread.getBody() instead!
resultPos* = 7
dispatcherPos* = 8
nfAllFieldsSet* = nfBase2
nkIdentKinds* = {nkIdent, nkSym, nkAccQuoted, nkOpenSymChoice,
nkClosedSymChoice, nkOpenSym}
nkPragmaCallKinds* = {nkExprColonExpr, nkCall, nkCallStrLit}
nkLiterals* = {nkCharLit..nkTripleStrLit}
nkFloatLiterals* = {nkFloatLit..nkFloat128Lit}
nkLambdaKinds* = {nkLambda, nkDo}
declarativeDefs* = {nkProcDef, nkFuncDef, nkMethodDef, nkIteratorDef, nkConverterDef}
routineDefs* = declarativeDefs + {nkMacroDef, nkTemplateDef}
procDefs* = nkLambdaKinds + declarativeDefs
callableDefs* = nkLambdaKinds + routineDefs
nkSymChoices* = {nkClosedSymChoice, nkOpenSymChoice}
nkStrKinds* = {nkStrLit..nkTripleStrLit}
skLocalVars* = {skVar, skLet, skForVar, skParam, skResult}
skProcKinds* = {skProc, skFunc, skTemplate, skMacro, skIterator,
skMethod, skConverter}
defaultSize = -1
defaultAlignment = -1
defaultOffset* = -1
proc getPIdent*(a: PNode): PIdent {.inline.} =
## Returns underlying `PIdent` for `{nkSym, nkIdent}`, or `nil`.
case a.kind
of nkSym: a.sym.name
of nkIdent: a.ident
of nkOpenSymChoice, nkClosedSymChoice: a.sons[0].sym.name
of nkOpenSym: getPIdent(a.sons[0])
else: nil
const
moduleShift = when defined(cpu32): 20 else: 24
template id*(a: PType | PSym): int =
let x = a
(x.itemId.module.int shl moduleShift) + x.itemId.item.int
type
IdGenerator* = ref object # unfortunately, we really need the 'shared mutable' aspect here.
module*: int32
symId*: int32
typeId*: int32
sealed*: bool
disambTable*: CountTable[PIdent]
const
PackageModuleId* = -3'i32
proc idGeneratorFromModule*(m: PSym): IdGenerator =
assert m.kind == skModule
result = IdGenerator(module: m.itemId.module, symId: m.itemId.item, typeId: 0, disambTable: initCountTable[PIdent]())
proc idGeneratorForPackage*(nextIdWillBe: int32): IdGenerator =
result = IdGenerator(module: PackageModuleId, symId: nextIdWillBe - 1'i32, typeId: 0, disambTable: initCountTable[PIdent]())
proc nextSymId(x: IdGenerator): ItemId {.inline.} =
assert(not x.sealed)
inc x.symId
result = ItemId(module: x.module, item: x.symId)
proc nextTypeId*(x: IdGenerator): ItemId {.inline.} =
assert(not x.sealed)
inc x.typeId
result = ItemId(module: x.module, item: x.typeId)
when false:
proc nextId*(x: IdGenerator): ItemId {.inline.} =
inc x.item
result = x[]
when false:
proc storeBack*(dest: var IdGenerator; src: IdGenerator) {.inline.} =
assert dest.ItemId.module == src.ItemId.module
if dest.ItemId.item > src.ItemId.item:
echo dest.ItemId.item, " ", src.ItemId.item, " ", src.ItemId.module
assert dest.ItemId.item <= src.ItemId.item
dest = src
var ggDebug* {.deprecated.}: bool ## convenience switch for trying out things
proc isCallExpr*(n: PNode): bool =
result = n.kind in nkCallKinds
proc discardSons*(father: PNode)
proc len*(n: PNode): int {.inline.} =
result = n.sons.len
proc safeLen*(n: PNode): int {.inline.} =
## works even for leaves.
if n.kind in {nkNone..nkNilLit}: result = 0
else: result = n.len
proc safeArrLen*(n: PNode): int {.inline.} =
## works for array-like objects (strings passed as openArray in VM).
if n.kind in {nkStrLit..nkTripleStrLit}: result = n.strVal.len
elif n.kind in {nkNone..nkFloat128Lit}: result = 0
else: result = n.len
proc add*(father, son: PNode) =
assert son != nil
father.sons.add(son)
proc addAllowNil*(father, son: PNode) {.inline.} =
father.sons.add(son)
template `[]`*(n: PNode, i: int): PNode = n.sons[i]
template `[]=`*(n: PNode, i: int; x: PNode) = n.sons[i] = x
template `[]`*(n: PNode, i: BackwardsIndex): PNode = n[n.len - i.int]
template `[]=`*(n: PNode, i: BackwardsIndex; x: PNode) = n[n.len - i.int] = x
proc add*(father, son: PType) =
assert son != nil
father.sons.add(son)
proc addAllowNil*(father, son: PType) {.inline.} =
father.sons.add(son)
template `[]`*(n: PType, i: int): PType = n.sons[i]
template `[]=`*(n: PType, i: int; x: PType) = n.sons[i] = x
template `[]`*(n: PType, i: BackwardsIndex): PType = n[n.len - i.int]
template `[]=`*(n: PType, i: BackwardsIndex; x: PType) = n[n.len - i.int] = x
proc getDeclPragma*(n: PNode): PNode =
## return the `nkPragma` node for declaration `n`, or `nil` if no pragma was found.
## Currently only supports routineDefs + {nkTypeDef}.
case n.kind
of routineDefs:
if n[pragmasPos].kind != nkEmpty: result = n[pragmasPos]
else: result = nil
of nkTypeDef:
#[
type F3*{.deprecated: "x3".} = int
TypeSection
TypeDef
PragmaExpr
Postfix
Ident "*"
Ident "F3"
Pragma
ExprColonExpr
Ident "deprecated"
StrLit "x3"
Empty
Ident "int"
]#
if n[0].kind == nkPragmaExpr:
result = n[0][1]
else:
result = nil
else:
# support as needed for `nkIdentDefs` etc.
result = nil
if result != nil:
assert result.kind == nkPragma, $(result.kind, n.kind)
proc extractPragma*(s: PSym): PNode =
## gets the pragma node of routine/type/var/let/const symbol `s`
if s.kind in routineKinds: # bug #24167
if s.ast[pragmasPos] != nil and s.ast[pragmasPos].kind != nkEmpty:
result = s.ast[pragmasPos]
else:
result = nil
elif s.kind in {skType, skVar, skLet, skConst}:
if s.ast != nil and s.ast.len > 0:
if s.ast[0].kind == nkPragmaExpr and s.ast[0].len > 1:
# s.ast = nkTypedef / nkPragmaExpr / [nkSym, nkPragma]
result = s.ast[0][1]
else:
result = nil
else:
result = nil
else:
result = nil
assert result == nil or result.kind == nkPragma
proc skipPragmaExpr*(n: PNode): PNode =
## if pragma expr, give the node the pragmas are applied to,
## otherwise give node itself
if n.kind == nkPragmaExpr:
result = n[0]
else:
result = n
proc setInfoRecursive*(n: PNode, info: TLineInfo) =
## set line info recursively
if n != nil:
for i in 0..<n.safeLen: setInfoRecursive(n[i], info)
n.info = info
when defined(useNodeIds):
const nodeIdToDebug* = -1 # 2322968
var gNodeId: int
template newNodeImpl(info2) =
result = PNode(kind: kind, info: info2)
when false:
# this would add overhead, so we skip it; it results in a small amount of leaked entries
# for old PNode that gets re-allocated at the same address as a PNode that
# has `nfHasComment` set (and an entry in that table). Only `nfHasComment`
# should be used to test whether a PNode has a comment; gconfig.comments
# can contain extra entries for deleted PNode's with comments.
gconfig.comments.del(cast[int](result))
template setIdMaybe() =
when defined(useNodeIds):
result.id = gNodeId
if result.id == nodeIdToDebug:
echo "KIND ", result.kind
writeStackTrace()
inc gNodeId
proc newNode*(kind: TNodeKind): PNode =
## new node with unknown line info, no type, and no children
newNodeImpl(unknownLineInfo)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newNodeI*(kind: TNodeKind, info: TLineInfo, children: int): PNode =
## new node with line info, type, and children
newNodeImpl(info)
if children > 0:
newSeq(result.sons, children)
setIdMaybe()
proc newNodeIT*(kind: TNodeKind, info: TLineInfo, typ: PType): PNode =
## new node with line info, type, and no children
result = newNode(kind)
result.info = info
result.typ = typ
proc newNode*(kind: TNodeKind, info: TLineInfo): PNode =
## new node with line info, no type, and no children
newNodeImpl(info)
setIdMaybe()
proc newAtom*(ident: PIdent, info: TLineInfo): PNode =
result = newNode(nkIdent, info)
result.ident = ident
proc newAtom*(kind: TNodeKind, intVal: BiggestInt, info: TLineInfo): PNode =
result = newNode(kind, info)
result.intVal = intVal
proc newAtom*(kind: TNodeKind, floatVal: BiggestFloat, info: TLineInfo): PNode =
result = newNode(kind, info)
result.floatVal = floatVal
proc newAtom*(kind: TNodeKind; strVal: sink string; info: TLineInfo): PNode =
result = newNode(kind, info)
result.strVal = strVal
proc newTree*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
result = newNodeI(kind, info)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTree*(kind: TNodeKind; children: varargs[PNode]): PNode =
result = newNode(kind)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTreeI*(kind: TNodeKind; info: TLineInfo; children: varargs[PNode]): PNode =
result = newNodeI(kind, info)
if children.len > 0:
result.info = children[0].info
result.sons = @children
proc newTreeIT*(kind: TNodeKind; info: TLineInfo; typ: PType; children: varargs[PNode]): PNode =
result = newNodeIT(kind, info, typ)
if children.len > 0:
result.info = children[0].info
result.sons = @children
template previouslyInferred*(t: PType): PType =
if t.sons.len > 1: t.last else: nil
when false:
import tables, strutils
var x: CountTable[string]
addQuitProc proc () {.noconv.} =
for k, v in pairs(x):
echo k
echo v
proc newSym*(symKind: TSymKind, name: PIdent, idgen: IdGenerator; owner: PSym,
info: TLineInfo; options: TOptions = {}): PSym =
# generates a symbol and initializes the hash field too
assert not name.isNil
let id = nextSymId idgen
result = PSym(name: name, kind: symKind, flags: {}, info: info, itemId: id,
options: options, owner: owner, offset: defaultOffset,
disamb: getOrDefault(idgen.disambTable, name).int32)
idgen.disambTable.inc name
when false:
if id.module == 48 and id.item == 39:
writeStackTrace()
echo "kind ", symKind, " ", name.s
if owner != nil: echo owner.name.s
proc astdef*(s: PSym): PNode =
# get only the definition (initializer) portion of the ast
if s.ast != nil and s.ast.kind in {nkIdentDefs, nkConstDef}:
s.ast[2]
else:
s.ast
proc isMetaType*(t: PType): bool =
return t.kind in tyMetaTypes or
(t.kind == tyStatic and t.n == nil) or
tfHasMeta in t.flags
proc isUnresolvedStatic*(t: PType): bool =
return t.kind == tyStatic and t.n == nil
proc linkTo*(t: PType, s: PSym): PType {.discardable.} =
t.sym = s
s.typ = t
result = t
proc linkTo*(s: PSym, t: PType): PSym {.discardable.} =
t.sym = s
s.typ = t
result = s
template fileIdx*(c: PSym): FileIndex =
# XXX: this should be used only on module symbols
c.position.FileIndex
template filename*(c: PSym): string =
# XXX: this should be used only on module symbols
c.position.FileIndex.toFilename
proc appendToModule*(m: PSym, n: PNode) =
## The compiler will use this internally to add nodes that will be
## appended to the module after the sem pass
if m.ast == nil:
m.ast = newNode(nkStmtList)
m.ast.sons = @[n]
else:
assert m.ast.kind == nkStmtList
m.ast.sons.add(n)
const # for all kind of hash tables:
GrowthFactor* = 2 # must be power of 2, > 0
StartSize* = 8 # must be power of 2, > 0
proc copyStrTable*(dest: var TStrTable, src: TStrTable) =
dest.counter = src.counter
setLen(dest.data, src.data.len)
for i in 0..high(src.data): dest.data[i] = src.data[i]
proc copyObjectSet*(dest: var TObjectSet, src: TObjectSet) =
dest.counter = src.counter
setLen(dest.data, src.data.len)
for i in 0..high(src.data): dest.data[i] = src.data[i]
proc discardSons*(father: PNode) =
father.sons = @[]
proc withInfo*(n: PNode, info: TLineInfo): PNode =
n.info = info
return n
proc newIdentNode*(ident: PIdent, info: TLineInfo): PNode =
result = newNode(nkIdent)
result.ident = ident
result.info = info
proc newSymNode*(sym: PSym): PNode =
result = newNode(nkSym)
result.sym = sym
result.typ = sym.typ
result.info = sym.info
proc newSymNode*(sym: PSym, info: TLineInfo): PNode =
result = newNode(nkSym)
result.sym = sym
result.typ = sym.typ
result.info = info
proc newOpenSym*(n: PNode): PNode {.inline.} =
result = newTreeI(nkOpenSym, n.info, n)
proc newIntNode*(kind: TNodeKind, intVal: BiggestInt): PNode =
result = newNode(kind)
result.intVal = intVal
proc newIntNode*(kind: TNodeKind, intVal: Int128): PNode =
result = newNode(kind)
result.intVal = castToInt64(intVal)
proc lastSon*(n: PNode): PNode {.inline.} = n.sons[^1]
template setLastSon*(n: PNode, s: PNode) = n.sons[^1] = s
template firstSon*(n: PNode): PNode = n.sons[0]
template secondSon*(n: PNode): PNode = n.sons[1]
template hasSon*(n: PNode): bool = n.len > 0
template has2Sons*(n: PNode): bool = n.len > 1
proc replaceFirstSon*(n, newson: PNode) {.inline.} =
n.sons[0] = newson
proc replaceSon*(n: PNode; i: int; newson: PNode) {.inline.} =
n.sons[i] = newson
proc last*(n: PType): PType {.inline.} = n.sons[^1]
proc elementType*(n: PType): PType {.inline.} = n.sons[^1]
proc skipModifier*(n: PType): PType {.inline.} = n.sons[^1]
proc indexType*(n: PType): PType {.inline.} = n.sons[0]
proc baseClass*(n: PType): PType {.inline.} = n.sons[0]
proc base*(t: PType): PType {.inline.} =
result = t.sons[0]
proc returnType*(n: PType): PType {.inline.} = n.sons[0]
proc setReturnType*(n, r: PType) {.inline.} = n.sons[0] = r
proc setIndexType*(n, idx: PType) {.inline.} = n.sons[0] = idx
proc firstParamType*(n: PType): PType {.inline.} = n.sons[1]
proc firstGenericParam*(n: PType): PType {.inline.} = n.sons[1]
proc typeBodyImpl*(n: PType): PType {.inline.} = n.sons[^1]
proc genericHead*(n: PType): PType {.inline.} = n.sons[0]
proc skipTypes*(t: PType, kinds: TTypeKinds): PType =
## Used throughout the compiler code to test whether a type tree contains or
## doesn't contain a specific type/types - it is often the case that only the
## last child nodes of a type tree need to be searched. This is a really hot
## path within the compiler!
result = t
while result.kind in kinds: result = last(result)
proc newIntTypeNode*(intVal: BiggestInt, typ: PType): PNode =
let kind = skipTypes(typ, abstractVarRange).kind
case kind
of tyInt: result = newNode(nkIntLit)
of tyInt8: result = newNode(nkInt8Lit)
of tyInt16: result = newNode(nkInt16Lit)
of tyInt32: result = newNode(nkInt32Lit)
of tyInt64: result = newNode(nkInt64Lit)
of tyChar: result = newNode(nkCharLit)
of tyUInt: result = newNode(nkUIntLit)
of tyUInt8: result = newNode(nkUInt8Lit)
of tyUInt16: result = newNode(nkUInt16Lit)
of tyUInt32: result = newNode(nkUInt32Lit)
of tyUInt64: result = newNode(nkUInt64Lit)
of tyBool, tyEnum:
# XXX: does this really need to be the kind nkIntLit?
result = newNode(nkIntLit)
of tyStatic: # that's a pre-existing bug, will fix in another PR
result = newNode(nkIntLit)
else: raiseAssert $kind
result.intVal = intVal
result.typ = typ
proc newIntTypeNode*(intVal: Int128, typ: PType): PNode =
# XXX: introduce range check
newIntTypeNode(castToInt64(intVal), typ)
proc newFloatNode*(kind: TNodeKind, floatVal: BiggestFloat): PNode =
result = newNode(kind)
result.floatVal = floatVal
proc newStrNode*(kind: TNodeKind, strVal: string): PNode =
result = newNode(kind)
result.strVal = strVal
proc newStrNode*(strVal: string; info: TLineInfo): PNode =
result = newNodeI(nkStrLit, info)
result.strVal = strVal
proc newProcNode*(kind: TNodeKind, info: TLineInfo, body: PNode,
params,
name, pattern, genericParams,
pragmas, exceptions: PNode): PNode =
result = newNodeI(kind, info)
result.sons = @[name, pattern, genericParams, params,
pragmas, exceptions, body]
const
AttachedOpToStr*: array[TTypeAttachedOp, string] = [
"=wasMoved", "=destroy", "=copy", "=dup", "=sink", "=trace", "=deepcopy"]
proc `$`*(s: PSym): string =
if s != nil:
result = s.name.s & "@" & $s.id
else:
result = "<nil>"
when false:
iterator items*(t: PType): PType =
for i in 0..<t.sons.len: yield t.sons[i]
iterator pairs*(n: PType): tuple[i: int, n: PType] =
for i in 0..<n.sons.len: yield (i, n.sons[i])
when true:
proc len*(n: PType): int {.inline.} =
result = n.sons.len
proc sameTupleLengths*(a, b: PType): bool {.inline.} =
result = a.sons.len == b.sons.len
iterator tupleTypePairs*(a, b: PType): (int, PType, PType) =
for i in 0 ..< a.sons.len:
yield (i, a.sons[i], b.sons[i])
iterator underspecifiedPairs*(a, b: PType; start = 0; without = 0): (PType, PType) =
# XXX Figure out with what typekinds this is called.
for i in start ..< min(a.sons.len, b.sons.len) + without:
yield (a.sons[i], b.sons[i])
proc signatureLen*(t: PType): int {.inline.} =
result = t.sons.len
proc paramsLen*(t: PType): int {.inline.} =
result = t.sons.len - 1
proc genericParamsLen*(t: PType): int {.inline.} =
assert t.kind == tyGenericInst
result = t.sons.len - 2 # without 'head' and 'body'
proc genericInvocationParamsLen*(t: PType): int {.inline.} =
assert t.kind == tyGenericInvocation
result = t.sons.len - 1 # without 'head'
proc kidsLen*(t: PType): int {.inline.} =
result = t.sons.len
proc genericParamHasConstraints*(t: PType): bool {.inline.} = t.sons.len > 0
proc hasElementType*(t: PType): bool {.inline.} = t.sons.len > 0
proc isEmptyTupleType*(t: PType): bool {.inline.} = t.sons.len == 0
proc isSingletonTupleType*(t: PType): bool {.inline.} = t.sons.len == 1
proc genericConstraint*(t: PType): PType {.inline.} = t.sons[0]
iterator genericInstParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len-1:
yield (i!=1, t.sons[i])
iterator genericInstParamPairs*(a, b: PType): (int, PType, PType) =
for i in 1..<min(a.sons.len, b.sons.len)-1:
yield (i-1, a.sons[i], b.sons[i])
iterator genericInvocationParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len:
yield (i!=1, t.sons[i])
iterator genericInvocationAndBodyElements*(a, b: PType): (PType, PType) =
for i in 1..<a.sons.len:
yield (a.sons[i], b.sons[i-1])
iterator genericInvocationParamPairs*(a, b: PType): (bool, PType, PType) =
for i in 1..<a.sons.len:
if i >= b.sons.len:
yield (false, nil, nil)
else:
yield (true, a.sons[i], b.sons[i])
iterator genericBodyParams*(t: PType): (int, PType) =
for i in 0..<t.sons.len-1:
yield (i, t.sons[i])
iterator userTypeClassInstParams*(t: PType): (bool, PType) =
for i in 1..<t.sons.len-1:
yield (i!=1, t.sons[i])
iterator ikids*(t: PType): (int, PType) =
for i in 0..<t.sons.len: yield (i, t.sons[i])
const
FirstParamAt* = 1
FirstGenericParamAt* = 1
iterator paramTypes*(t: PType): (int, PType) =
for i in FirstParamAt..<t.sons.len: yield (i, t.sons[i])
iterator paramTypePairs*(a, b: PType): (PType, PType) =
for i in FirstParamAt..<a.sons.len: yield (a.sons[i], b.sons[i])
template paramTypeToNodeIndex*(x: int): int = x
iterator kids*(t: PType): PType =
for i in 0..<t.sons.len: yield t.sons[i]
iterator signature*(t: PType): PType =
# yields return type + parameter types
for i in 0..<t.sons.len: yield t.sons[i]
proc newType*(kind: TTypeKind; idgen: IdGenerator; owner: PSym; son: sink PType = nil): PType =
let id = nextTypeId idgen
result = PType(kind: kind, owner: owner, size: defaultSize,
align: defaultAlignment, itemId: id,
uniqueId: id, sons: @[])
if son != nil: result.sons.add son
when false:
if result.itemId.module == 55 and result.itemId.item == 2:
echo "KNID ", kind
writeStackTrace()
proc setSons*(dest: PType; sons: sink seq[PType]) {.inline.} = dest.sons = sons
proc setSon*(dest: PType; son: sink PType) {.inline.} = dest.sons = @[son]
proc setSonsLen*(dest: PType; len: int) {.inline.} = setLen(dest.sons, len)
proc mergeLoc(a: var TLoc, b: TLoc) =
if a.k == low(typeof(a.k)): a.k = b.k
if a.storage == low(typeof(a.storage)): a.storage = b.storage
a.flags.incl b.flags
if a.lode == nil: a.lode = b.lode
if a.snippet == "": a.snippet = b.snippet
proc newSons*(father: PNode, length: int) =
setLen(father.sons, length)
proc newSons*(father: PType, length: int) =
setLen(father.sons, length)
proc truncateInferredTypeCandidates*(t: PType) {.inline.} =
assert t.kind == tyInferred
if t.sons.len > 1:
setLen(t.sons, 1)
proc assignType*(dest, src: PType) =
dest.kind = src.kind
dest.flags = src.flags
dest.callConv = src.callConv
dest.n = src.n
dest.size = src.size
dest.align = src.align
# this fixes 'type TLock = TSysLock':
if src.sym != nil:
if dest.sym != nil:
dest.sym.flags.incl src.sym.flags-{sfUsed, sfExported}
if dest.sym.annex == nil: dest.sym.annex = src.sym.annex
mergeLoc(dest.sym.loc, src.sym.loc)
else:
dest.sym = src.sym
newSons(dest, src.sons.len)
for i in 0..<src.sons.len: dest[i] = src[i]
proc copyType*(t: PType, idgen: IdGenerator, owner: PSym): PType =
result = newType(t.kind, idgen, owner)
assignType(result, t)
result.sym = t.sym # backend-info should not be copied
proc exactReplica*(t: PType): PType =
result = PType(kind: t.kind, owner: t.owner, size: defaultSize,
align: defaultAlignment, itemId: t.itemId,
uniqueId: t.uniqueId)
assignType(result, t)
result.sym = t.sym # backend-info should not be copied
proc copySym*(s: PSym; idgen: IdGenerator): PSym =
result = newSym(s.kind, s.name, idgen, s.owner, s.info, s.options)
#result.ast = nil # BUGFIX; was: s.ast which made problems
result.typ = s.typ
result.flags = s.flags
result.magic = s.magic
result.options = s.options
result.position = s.position
result.loc = s.loc
result.annex = s.annex # BUGFIX
result.constraint = s.constraint
if result.kind in {skVar, skLet, skField}:
result.guard = s.guard
result.bitsize = s.bitsize
result.alignment = s.alignment
proc createModuleAlias*(s: PSym, idgen: IdGenerator, newIdent: PIdent, info: TLineInfo;
options: TOptions): PSym =
result = newSym(s.kind, newIdent, idgen, s.owner, info, options)
# keep ID!
result.ast = s.ast
#result.id = s.id # XXX figure out what to do with the ID.
result.flags = s.flags
result.options = s.options
result.position = s.position
result.loc = s.loc
result.annex = s.annex
proc initStrTable*(): TStrTable =
result = TStrTable(counter: 0)
newSeq(result.data, StartSize)
proc initObjectSet*(): TObjectSet =
result = TObjectSet(counter: 0)
newSeq(result.data, StartSize)
proc initNodeTable*(): TNodeTable =
result = TNodeTable(counter: 0)
newSeq(result.data, StartSize)
proc skipTypes*(t: PType, kinds: TTypeKinds; maxIters: int): PType =
result = t
var i = maxIters
while result.kind in kinds:
result = last(result)
dec i
if i == 0: return nil
proc skipTypesOrNil*(t: PType, kinds: TTypeKinds): PType =
## same as skipTypes but handles 'nil'
result = t
while result != nil and result.kind in kinds:
if result.sons.len == 0: return nil
result = last(result)
proc isGCedMem*(t: PType): bool {.inline.} =
result = t.kind in {tyString, tyRef, tySequence} or
t.kind == tyProc and t.callConv == ccClosure
proc propagateToOwner*(owner, elem: PType; propagateHasAsgn = true) =
owner.flags.incl elem.flags * {tfHasMeta, tfTriggersCompileTime}
if tfNotNil in elem.flags:
if owner.kind in {tyGenericInst, tyGenericBody, tyGenericInvocation}:
owner.flags.incl tfNotNil
if elem.isMetaType:
owner.flags.incl tfHasMeta
let mask = elem.flags * {tfHasAsgn, tfHasOwned}
if mask != {} and propagateHasAsgn:
let o2 = owner.skipTypes({tyGenericInst, tyAlias, tySink})
if o2.kind in {tyTuple, tyObject, tyArray,
tySequence, tySet, tyDistinct}:
o2.flags.incl mask
owner.flags.incl mask
if owner.kind notin {tyProc, tyGenericInst, tyGenericBody,
tyGenericInvocation, tyPtr}:
let elemB = elem.skipTypes({tyGenericInst, tyAlias, tySink})
if elemB.isGCedMem or tfHasGCedMem in elemB.flags:
# for simplicity, we propagate this flag even to generics. We then
# ensure this doesn't bite us in sempass2.
owner.flags.incl tfHasGCedMem
proc rawAddSon*(father, son: PType; propagateHasAsgn = true) =
father.sons.add(son)
if not son.isNil: propagateToOwner(father, son, propagateHasAsgn)
proc addSonNilAllowed*(father, son: PNode) =
father.sons.add(son)
proc delSon*(father: PNode, idx: int) =
if father.len == 0: return
for i in idx..<father.len - 1: father[i] = father[i + 1]
father.sons.setLen(father.len - 1)
proc copyNode*(src: PNode): PNode =
# does not copy its sons!
if src == nil:
return nil
result = newNode(src.kind)
result.info = src.info
result.typ = src.typ
result.flags = src.flags * PersistentNodeFlags
result.comment = src.comment
when defined(useNodeIds):
if result.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
of nkFloatLiterals: result.floatVal = src.floatVal
of nkSym: result.sym = src.sym
of nkIdent: result.ident = src.ident
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
else: discard
when defined(nimsuggest):
result.endInfo = src.endInfo
template transitionNodeKindCommon(k: TNodeKind) =
let obj {.inject.} = n[]
n[] = TNode(kind: k, typ: obj.typ, info: obj.info, flags: obj.flags)
# n.comment = obj.comment # shouldn't be needed, the address doesnt' change
when defined(useNodeIds):
n.id = obj.id
proc transitionSonsKind*(n: PNode, kind: range[nkComesFrom..nkTupleConstr]) =
transitionNodeKindCommon(kind)
n.sons = obj.sons
proc transitionIntKind*(n: PNode, kind: range[nkCharLit..nkUInt64Lit]) =
transitionNodeKindCommon(kind)
n.intVal = obj.intVal
proc transitionIntToFloatKind*(n: PNode, kind: range[nkFloatLit..nkFloat128Lit]) =
transitionNodeKindCommon(kind)
n.floatVal = BiggestFloat(obj.intVal)
proc transitionNoneToSym*(n: PNode) =
transitionNodeKindCommon(nkSym)
template transitionSymKindCommon*(k: TSymKind) =
let obj {.inject.} = s[]
s[] = TSym(kind: k, itemId: obj.itemId, magic: obj.magic, typ: obj.typ, name: obj.name,
info: obj.info, owner: obj.owner, flags: obj.flags, ast: obj.ast,
options: obj.options, position: obj.position, offset: obj.offset,
loc: obj.loc, annex: obj.annex, constraint: obj.constraint)
when hasFFI:
s.cname = obj.cname
when defined(nimsuggest):
s.allUsages = obj.allUsages
proc transitionGenericParamToType*(s: PSym) =
transitionSymKindCommon(skType)
proc transitionRoutineSymKind*(s: PSym, kind: range[skProc..skTemplate]) =
transitionSymKindCommon(kind)
s.gcUnsafetyReason = obj.gcUnsafetyReason
s.transformedBody = obj.transformedBody
proc transitionToLet*(s: PSym) =
transitionSymKindCommon(skLet)
s.guard = obj.guard
s.bitsize = obj.bitsize
s.alignment = obj.alignment
template copyNodeImpl(dst, src, processSonsStmt) =
if src == nil: return
dst = newNode(src.kind)
dst.info = src.info
when defined(nimsuggest):
result.endInfo = src.endInfo
dst.typ = src.typ
dst.flags = src.flags * PersistentNodeFlags
dst.comment = src.comment
when defined(useNodeIds):
if dst.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: dst.intVal = src.intVal
of nkFloatLiterals: dst.floatVal = src.floatVal
of nkSym: dst.sym = src.sym
of nkIdent: dst.ident = src.ident
of nkStrLit..nkTripleStrLit: dst.strVal = src.strVal
else: processSonsStmt
proc shallowCopy*(src: PNode): PNode =
# does not copy its sons, but provides space for them:
copyNodeImpl(result, src):
newSeq(result.sons, src.len)
proc copyTree*(src: PNode): PNode =
# copy a whole syntax tree; performs deep copying
copyNodeImpl(result, src):
newSeq(result.sons, src.len)
for i in 0..<src.len:
result[i] = copyTree(src[i])
proc copyTreeWithoutNode*(src, skippedNode: PNode): PNode =
copyNodeImpl(result, src):
result.sons = newSeqOfCap[PNode](src.len)
for n in src.sons:
if n != skippedNode:
result.sons.add copyTreeWithoutNode(n, skippedNode)
proc hasSonWith*(n: PNode, kind: TNodeKind): bool =
for i in 0..<n.len:
if n[i].kind == kind:
return true
result = false
proc hasNilSon*(n: PNode): bool =
for i in 0..<n.safeLen:
if n[i] == nil:
return true
elif hasNilSon(n[i]):
return true
result = false
proc containsNode*(n: PNode, kinds: TNodeKinds): bool =
result = false
if n == nil: return
case n.kind
of nkEmpty..nkNilLit: result = n.kind in kinds
else:
for i in 0..<n.len:
if n.kind in kinds or containsNode(n[i], kinds): return true
proc hasSubnodeWith*(n: PNode, kind: TNodeKind): bool =
case n.kind
of nkEmpty..nkNilLit, nkFormalParams: result = n.kind == kind
else:
for i in 0..<n.len:
if (n[i].kind == kind) or hasSubnodeWith(n[i], kind):
return true
result = false
proc getInt*(a: PNode): Int128 =
case a.kind
of nkCharLit, nkUIntLit..nkUInt64Lit:
result = toInt128(cast[uint64](a.intVal))
of nkInt8Lit..nkInt64Lit:
result = toInt128(a.intVal)
of nkIntLit:
# XXX: enable this assert
# assert a.typ.kind notin {tyChar, tyUint..tyUInt64}
result = toInt128(a.intVal)
else:
raiseRecoverableError("cannot extract number from invalid AST node")
proc getInt64*(a: PNode): int64 {.deprecated: "use getInt".} =
case a.kind
of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
result = a.intVal
else:
raiseRecoverableError("cannot extract number from invalid AST node")
proc getFloat*(a: PNode): BiggestFloat =
case a.kind
of nkFloatLiterals: result = a.floatVal
of nkCharLit, nkUIntLit..nkUInt64Lit, nkIntLit..nkInt64Lit:
result = BiggestFloat a.intVal
else:
raiseRecoverableError("cannot extract number from invalid AST node")
#doAssert false, "getFloat"
#internalError(a.info, "getFloat")
#result = 0.0
proc getStr*(a: PNode): string =
case a.kind
of nkStrLit..nkTripleStrLit: result = a.strVal
of nkNilLit:
# let's hope this fixes more problems than it creates:
result = ""
else:
raiseRecoverableError("cannot extract string from invalid AST node")
#doAssert false, "getStr"
#internalError(a.info, "getStr")
#result = ""
proc getStrOrChar*(a: PNode): string =
case a.kind
of nkStrLit..nkTripleStrLit: result = a.strVal
of nkCharLit..nkUInt64Lit: result = $chr(int(a.intVal))
else:
raiseRecoverableError("cannot extract string from invalid AST node")
#doAssert false, "getStrOrChar"
#internalError(a.info, "getStrOrChar")
#result = ""
proc isGenericParams*(n: PNode): bool {.inline.} =
## used to judge whether a node is generic params.
n != nil and n.kind == nkGenericParams
proc isGenericRoutine*(n: PNode): bool {.inline.} =
n != nil and n.kind in callableDefs and n[genericParamsPos].isGenericParams
proc isGenericRoutineStrict*(s: PSym): bool {.inline.} =
## determines if this symbol represents a generic routine
## the unusual name is so it doesn't collide and eventually replaces
## `isGenericRoutine`
s.kind in skProcKinds and s.ast.isGenericRoutine
proc isGenericRoutine*(s: PSym): bool {.inline.} =
## determines if this symbol represents a generic routine or an instance of
## one. This should be renamed accordingly and `isGenericRoutineStrict`
## should take this name instead.
##
## Warning/XXX: Unfortunately, it considers a proc kind symbol flagged with
## sfFromGeneric as a generic routine. Instead this should likely not be the
## case and the concepts should be teased apart:
## - generic definition
## - generic instance
## - either generic definition or instance
s.kind in skProcKinds and (sfFromGeneric in s.flags or
s.ast.isGenericRoutine)
proc skipGenericOwner*(s: PSym): PSym =
## Generic instantiations are owned by their originating generic
## symbol. This proc skips such owners and goes straight to the owner
## of the generic itself (the module or the enclosing proc).
result = if s.kind == skModule:
s
elif s.kind in skProcKinds and sfFromGeneric in s.flags and s.owner.kind != skModule:
s.owner.owner
else:
s.owner
proc originatingModule*(s: PSym): PSym =
result = s
while result.kind != skModule: result = result.owner
proc isRoutine*(s: PSym): bool {.inline.} =
result = s.kind in skProcKinds
proc isCompileTimeProc*(s: PSym): bool {.inline.} =
result = s.kind == skMacro or
s.kind in {skProc, skFunc} and sfCompileTime in s.flags
proc hasPattern*(s: PSym): bool {.inline.} =
result = isRoutine(s) and s.ast[patternPos].kind != nkEmpty
iterator items*(n: PNode): PNode =
for i in 0..<n.safeLen: yield n[i]
iterator pairs*(n: PNode): tuple[i: int, n: PNode] =
for i in 0..<n.safeLen: yield (i, n[i])
proc isAtom*(n: PNode): bool {.inline.} =
result = n.kind >= nkNone and n.kind <= nkNilLit
proc isEmptyType*(t: PType): bool {.inline.} =
## 'void' and 'typed' types are often equivalent to 'nil' these days:
result = t == nil or t.kind in {tyVoid, tyTyped}
proc makeStmtList*(n: PNode): PNode =
if n.kind == nkStmtList:
result = n
else:
result = newNodeI(nkStmtList, n.info)
result.add n
proc skipStmtList*(n: PNode): PNode =
if n.kind in {nkStmtList, nkStmtListExpr}:
for i in 0..<n.len-1:
if n[i].kind notin {nkEmpty, nkCommentStmt}: return n
result = n.lastSon
else:
result = n
proc toVar*(typ: PType; kind: TTypeKind; idgen: IdGenerator): PType =
## If ``typ`` is not a tyVar then it is converted into a `var <typ>` and
## returned. Otherwise ``typ`` is simply returned as-is.
result = typ
if typ.kind != kind:
result = newType(kind, idgen, typ.owner, typ)
proc toRef*(typ: PType; idgen: IdGenerator): PType =
## If ``typ`` is a tyObject then it is converted into a `ref <typ>` and
## returned. Otherwise ``typ`` is simply returned as-is.
result = typ
if typ.skipTypes({tyAlias, tyGenericInst}).kind == tyObject:
result = newType(tyRef, idgen, typ.owner, typ)
proc toObject*(typ: PType): PType =
## If ``typ`` is a tyRef then its immediate son is returned (which in many
## cases should be a ``tyObject``).
## Otherwise ``typ`` is simply returned as-is.
let t = typ.skipTypes({tyAlias, tyGenericInst})
if t.kind == tyRef: t.elementType
else: typ
proc toObjectFromRefPtrGeneric*(typ: PType): PType =
#[
See also `toObject`.
Finds the underlying `object`, even in cases like these:
type
B[T] = object f0: int
A1[T] = ref B[T]
A2[T] = ref object f1: int
A3 = ref object f2: int
A4 = object f3: int
]#
result = typ
while true:
case result.kind
of tyGenericBody: result = result.last
of tyRef, tyPtr, tyGenericInst, tyGenericInvocation, tyAlias: result = result[0]
# automatic dereferencing is deep, refs #18298.
else: break
# result does not have to be object type
proc isImportedException*(t: PType; conf: ConfigRef): bool =
assert t != nil
if conf.exc != excCpp:
return false
let base = t.skipTypes({tyAlias, tyPtr, tyDistinct, tyGenericInst})
result = base.sym != nil and {sfCompileToCpp, sfImportc} * base.sym.flags != {}
proc isInfixAs*(n: PNode): bool =
return n.kind == nkInfix and n[0].kind == nkIdent and n[0].ident.id == ord(wAs)
proc skipColon*(n: PNode): PNode =
result = n
if n.kind == nkExprColonExpr:
result = n[1]
proc findUnresolvedStatic*(n: PNode): PNode =
if n.kind == nkSym and n.typ != nil and n.typ.kind == tyStatic and n.typ.n == nil:
return n
if n.typ != nil and n.typ.kind == tyTypeDesc:
let t = skipTypes(n.typ, {tyTypeDesc})
if t.kind == tyGenericParam and not t.genericParamHasConstraints:
return n
for son in n:
let n = son.findUnresolvedStatic
if n != nil: return n
return nil
when false:
proc containsNil*(n: PNode): bool =
# only for debugging
if n.isNil: return true
for i in 0..<n.safeLen:
if n[i].containsNil: return true
template hasDestructor*(t: PType): bool = {tfHasAsgn, tfHasOwned} * t.flags != {}
template incompleteType*(t: PType): bool =
t.sym != nil and {sfForward, sfNoForward} * t.sym.flags == {sfForward}
template typeCompleted*(s: PSym) =
incl s.flags, sfNoForward
template detailedInfo*(sym: PSym): string =
sym.name.s
proc isInlineIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags and typ.callConv != ccClosure
proc isIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags
proc isClosureIterator*(typ: PType): bool {.inline.} =
typ.kind == tyProc and tfIterator in typ.flags and typ.callConv == ccClosure
proc isClosure*(typ: PType): bool {.inline.} =
typ.kind == tyProc and typ.callConv == ccClosure
proc isNimcall*(s: PSym): bool {.inline.} =
s.typ.callConv == ccNimCall
proc isExplicitCallConv*(s: PSym): bool {.inline.} =
tfExplicitCallConv in s.typ.flags
proc isSinkParam*(s: PSym): bool {.inline.} =
s.kind == skParam and (s.typ.kind == tySink or tfHasOwned in s.typ.flags)
proc isSinkType*(t: PType): bool {.inline.} =
t.kind == tySink or tfHasOwned in t.flags
proc newProcType*(info: TLineInfo; idgen: IdGenerator; owner: PSym): PType =
result = newType(tyProc, idgen, owner)
result.n = newNodeI(nkFormalParams, info)
rawAddSon(result, nil) # return type
# result.n[0] used to be `nkType`, but now it's `nkEffectList` because
# the effects are now stored in there too ... this is a bit hacky, but as
# usual we desperately try to save memory:
result.n.add newNodeI(nkEffectList, info)
proc addParam*(procType: PType; param: PSym) =
param.position = procType.sons.len-1
procType.n.add newSymNode(param)
rawAddSon(procType, param.typ)
const magicsThatCanRaise = {
mNone, mSlurp, mStaticExec, mParseExprToAst, mParseStmtToAst, mEcho}
proc canRaiseConservative*(fn: PNode): bool =
if fn.kind == nkSym and fn.sym.magic notin magicsThatCanRaise:
result = false
else:
result = true
proc canRaise*(fn: PNode): bool =
if fn.kind == nkSym and (fn.sym.magic notin magicsThatCanRaise or
{sfImportc, sfInfixCall} * fn.sym.flags == {sfImportc} or
sfGeneratedOp in fn.sym.flags):
result = false
elif fn.kind == nkSym and fn.sym.magic == mEcho:
result = true
else:
# TODO check for n having sons? or just return false for now if not
if fn.typ != nil and fn.typ.n != nil and fn.typ.n[0].kind == nkSym:
result = false
else:
result = fn.typ != nil and fn.typ.n != nil and ((fn.typ.n[0].len < effectListLen) or
(fn.typ.n[0][exceptionEffects] != nil and
fn.typ.n[0][exceptionEffects].safeLen > 0))
proc toHumanStrImpl[T](kind: T, num: static int): string =
result = $kind
result = result[num..^1]
result[0] = result[0].toLowerAscii
proc toHumanStr*(kind: TSymKind): string =
## strips leading `sk`
result = toHumanStrImpl(kind, 2)
proc toHumanStr*(kind: TTypeKind): string =
## strips leading `tk`
result = toHumanStrImpl(kind, 2)
proc skipHiddenAddr*(n: PNode): PNode {.inline.} =
(if n.kind == nkHiddenAddr: n[0] else: n)
proc isNewStyleConcept*(n: PNode): bool {.inline.} =
assert n.kind == nkTypeClassTy
result = n[0].kind == nkEmpty
proc isOutParam*(t: PType): bool {.inline.} = tfIsOutParam in t.flags
const
nodesToIgnoreSet* = {nkNone..pred(nkSym), succ(nkSym)..nkNilLit,
nkTypeSection, nkProcDef, nkConverterDef,
nkMethodDef, nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo,
nkFuncDef, nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt,
nkExportStmt, nkPragma, nkCommentStmt, nkBreakState,
nkTypeOfExpr, nkMixinStmt, nkBindStmt}
proc isTrue*(n: PNode): bool =
n.kind == nkSym and n.sym.kind == skEnumField and n.sym.position != 0 or
n.kind == nkIntLit and n.intVal != 0
type
TypeMapping* = Table[ItemId, PType]
SymMapping* = Table[ItemId, PSym]
template idTableGet*(tab: typed; key: PSym | PType): untyped = tab.getOrDefault(key.itemId)
template idTablePut*(tab: typed; key, val: PSym | PType) = tab[key.itemId] = val
template initSymMapping*(): Table[ItemId, PSym] = initTable[ItemId, PSym]()
template initTypeMapping*(): Table[ItemId, PType] = initTable[ItemId, PType]()
template resetIdTable*(tab: Table[ItemId, PSym]) = tab.clear()
template resetIdTable*(tab: Table[ItemId, PType]) = tab.clear()
|