1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
#
#
# The Nim Compiler
# (c) Copyright 2020 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## New styled concepts for Nim. See https://github.com/nim-lang/RFCs/issues/168
## for details. Note this is a first implementation and only the "Concept matching"
## section has been implemented.
import ast, astalgo, semdata, lookups, lineinfos, idents, msgs, renderer, types
import std/intsets
when defined(nimPreviewSlimSystem):
import std/assertions
const
logBindings = false
## Code dealing with Concept declarations
## --------------------------------------
proc declareSelf(c: PContext; info: TLineInfo) =
## Adds the magical 'Self' symbols to the current scope.
let ow = getCurrOwner(c)
let s = newSym(skType, getIdent(c.cache, "Self"), c.idgen, ow, info)
s.typ = newType(tyTypeDesc, c.idgen, ow)
s.typ.flags.incl {tfUnresolved, tfPacked}
s.typ.add newType(tyEmpty, c.idgen, ow)
addDecl(c, s, info)
proc semConceptDecl(c: PContext; n: PNode): PNode =
## Recursive helper for semantic checking for the concept declaration.
## Currently we only support (possibly empty) lists of statements
## containing 'proc' declarations and the like.
case n.kind
of nkStmtList, nkStmtListExpr:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = semConceptDecl(c, n[i])
of nkProcDef..nkIteratorDef, nkFuncDef:
result = c.semExpr(c, n, {efWantStmt})
of nkTypeClassTy:
result = shallowCopy(n)
for i in 0..<n.len-1:
result[i] = n[i]
result[^1] = semConceptDecl(c, n[^1])
of nkCommentStmt:
result = n
else:
localError(c.config, n.info, "unexpected construct in the new-styled concept: " & renderTree(n))
result = n
proc semConceptDeclaration*(c: PContext; n: PNode): PNode =
## Semantic checking for the concept declaration. Runs
## when we process the concept itself, not its matching process.
assert n.kind == nkTypeClassTy
inc c.inConceptDecl
openScope(c)
declareSelf(c, n.info)
result = semConceptDecl(c, n)
rawCloseScope(c)
dec c.inConceptDecl
## Concept matching
## ----------------
type
MatchCon = object ## Context we pass around during concept matching.
inferred: seq[(PType, PType)] ## we need a seq here so that we can easily undo inferences \
## that turned out to be wrong.
marker: IntSet ## Some protection against wild runaway recursions.
potentialImplementation: PType ## the concrete type that might match the concept we try to match.
magic: TMagic ## mArrGet and mArrPut is wrong in system.nim and
## cannot be fixed that easily.
## Thus we special case it here.
proc existingBinding(m: MatchCon; key: PType): PType =
## checks if we bound the type variable 'key' already to some
## concrete type.
for i in 0..<m.inferred.len:
if m.inferred[i][0] == key: return m.inferred[i][1]
return nil
proc conceptMatchNode(c: PContext; n: PNode; m: var MatchCon): bool
proc matchType(c: PContext; f, a: PType; m: var MatchCon): bool =
## The heart of the concept matching process. 'f' is the formal parameter of some
## routine inside the concept that we're looking for. 'a' is the formal parameter
## of a routine that might match.
const
ignorableForArgType = {tyVar, tySink, tyLent, tyOwned, tyGenericInst, tyAlias, tyInferred}
case f.kind
of tyAlias:
result = matchType(c, f.skipModifier, a, m)
of tyTypeDesc:
if isSelf(f):
#let oldLen = m.inferred.len
result = matchType(c, a, m.potentialImplementation, m)
#echo "self is? ", result, " ", a.kind, " ", a, " ", m.potentialImplementation, " ", m.potentialImplementation.kind
#m.inferred.setLen oldLen
#echo "A for ", result, " to ", typeToString(a), " to ", typeToString(m.potentialImplementation)
else:
if a.kind == tyTypeDesc and f.hasElementType == a.hasElementType:
if f.hasElementType:
result = matchType(c, f.elementType, a.elementType, m)
else:
result = true # both lack it
else:
result = false
of tyGenericInvocation:
result = false
if a.kind == tyGenericInst and a.genericHead.kind == tyGenericBody:
if sameType(f.genericHead, a.genericHead) and f.kidsLen == a.kidsLen-1:
for i in FirstGenericParamAt ..< f.kidsLen:
if not matchType(c, f[i], a[i], m): return false
return true
of tyGenericParam:
let ak = a.skipTypes({tyVar, tySink, tyLent, tyOwned})
if ak.kind in {tyTypeDesc, tyStatic} and not isSelf(ak):
result = false
else:
let old = existingBinding(m, f)
if old == nil:
if f.hasElementType and f.elementType.kind != tyNone:
# also check the generic's constraints:
let oldLen = m.inferred.len
result = matchType(c, f.elementType, a, m)
m.inferred.setLen oldLen
if result:
when logBindings: echo "A adding ", f, " ", ak
m.inferred.add((f, ak))
elif m.magic == mArrGet and ak.kind in {tyArray, tyOpenArray, tySequence, tyVarargs, tyCstring, tyString}:
when logBindings: echo "B adding ", f, " ", lastSon ak
m.inferred.add((f, last ak))
result = true
else:
when logBindings: echo "C adding ", f, " ", ak
m.inferred.add((f, ak))
#echo "binding ", typeToString(ak), " to ", typeToString(f)
result = true
elif not m.marker.containsOrIncl(old.id):
result = matchType(c, old, ak, m)
if m.magic == mArrPut and ak.kind == tyGenericParam:
result = true
else:
result = false
#echo "B for ", result, " to ", typeToString(a), " to ", typeToString(m.potentialImplementation)
of tyVar, tySink, tyLent, tyOwned:
# modifiers in the concept must be there in the actual implementation
# too but not vice versa.
if a.kind == f.kind:
result = matchType(c, f.elementType, a.elementType, m)
elif m.magic == mArrPut:
result = matchType(c, f.elementType, a, m)
else:
result = false
of tyEnum, tyObject, tyDistinct:
result = sameType(f, a)
of tyEmpty, tyString, tyCstring, tyPointer, tyNil, tyUntyped, tyTyped, tyVoid:
result = a.skipTypes(ignorableForArgType).kind == f.kind
of tyBool, tyChar, tyInt..tyUInt64:
let ak = a.skipTypes(ignorableForArgType)
result = ak.kind == f.kind or ak.kind == tyOrdinal or
(ak.kind == tyGenericParam and ak.hasElementType and ak.elementType.kind == tyOrdinal)
of tyConcept:
let oldLen = m.inferred.len
let oldPotentialImplementation = m.potentialImplementation
m.potentialImplementation = a
result = conceptMatchNode(c, f.n.lastSon, m)
m.potentialImplementation = oldPotentialImplementation
if not result:
m.inferred.setLen oldLen
of tyArray, tyTuple, tyVarargs, tyOpenArray, tyRange, tySequence, tyRef, tyPtr,
tyGenericInst:
# ^ XXX Rewrite this logic, it's more complex than it needs to be.
result = false
let ak = a.skipTypes(ignorableForArgType - {f.kind})
if ak.kind == f.kind and f.kidsLen == ak.kidsLen:
for i in 0..<ak.kidsLen:
if not matchType(c, f[i], ak[i], m): return false
return true
of tyOr:
let oldLen = m.inferred.len
if a.kind == tyOr:
# say the concept requires 'int|float|string' if the potentialImplementation
# says 'int|string' that is good enough.
var covered = 0
for ff in f.kids:
for aa in a.kids:
let oldLenB = m.inferred.len
let r = matchType(c, ff, aa, m)
if r:
inc covered
break
m.inferred.setLen oldLenB
result = covered >= a.kidsLen
if not result:
m.inferred.setLen oldLen
else:
result = false
for ff in f.kids:
result = matchType(c, ff, a, m)
if result: break # and remember the binding!
m.inferred.setLen oldLen
of tyNot:
if a.kind == tyNot:
result = matchType(c, f.elementType, a.elementType, m)
else:
let oldLen = m.inferred.len
result = not matchType(c, f.elementType, a, m)
m.inferred.setLen oldLen
of tyAnything:
result = true
of tyOrdinal:
result = isOrdinalType(a, allowEnumWithHoles = false) or a.kind == tyGenericParam
else:
result = false
proc matchReturnType(c: PContext; f, a: PType; m: var MatchCon): bool =
## Like 'matchType' but with extra logic dealing with proc return types
## which can be nil or the 'void' type.
if f.isEmptyType:
result = a.isEmptyType
elif a == nil:
result = false
else:
result = matchType(c, f, a, m)
proc matchSym(c: PContext; candidate: PSym, n: PNode; m: var MatchCon): bool =
## Checks if 'candidate' matches 'n' from the concept body. 'n' is a nkProcDef
## or similar.
# watch out: only add bindings after a completely successful match.
let oldLen = m.inferred.len
let can = candidate.typ.n
let con = n[0].sym.typ.n
if can.len < con.len:
# too few arguments, cannot be a match:
return false
let common = min(can.len, con.len)
for i in 1 ..< common:
if not matchType(c, con[i].typ, can[i].typ, m):
m.inferred.setLen oldLen
return false
if not matchReturnType(c, n[0].sym.typ.returnType, candidate.typ.returnType, m):
m.inferred.setLen oldLen
return false
# all other parameters have to be optional parameters:
for i in common ..< can.len:
assert can[i].kind == nkSym
if can[i].sym.ast == nil:
# has too many arguments one of which is not optional:
m.inferred.setLen oldLen
return false
return true
proc matchSyms(c: PContext, n: PNode; kinds: set[TSymKind]; m: var MatchCon): bool =
## Walk the current scope, extract candidates which the same name as 'n[namePos]',
## 'n' is the nkProcDef or similar from the concept that we try to match.
let candidates = searchInScopesAllCandidatesFilterBy(c, n[namePos].sym.name, kinds)
for candidate in candidates:
#echo "considering ", typeToString(candidate.typ), " ", candidate.magic
m.magic = candidate.magic
if matchSym(c, candidate, n, m): return true
result = false
proc conceptMatchNode(c: PContext; n: PNode; m: var MatchCon): bool =
## Traverse the concept's AST ('n') and see if every declaration inside 'n'
## can be matched with the current scope.
case n.kind
of nkStmtList, nkStmtListExpr:
for i in 0..<n.len:
if not conceptMatchNode(c, n[i], m):
return false
return true
of nkProcDef, nkFuncDef:
# procs match any of: proc, template, macro, func, method, converter.
# The others are more specific.
# XXX: Enforce .noSideEffect for 'nkFuncDef'? But then what are the use cases...
const filter = {skProc, skTemplate, skMacro, skFunc, skMethod, skConverter}
result = matchSyms(c, n, filter, m)
of nkTemplateDef:
result = matchSyms(c, n, {skTemplate}, m)
of nkMacroDef:
result = matchSyms(c, n, {skMacro}, m)
of nkConverterDef:
result = matchSyms(c, n, {skConverter}, m)
of nkMethodDef:
result = matchSyms(c, n, {skMethod}, m)
of nkIteratorDef:
result = matchSyms(c, n, {skIterator}, m)
of nkCommentStmt:
result = true
else:
# error was reported earlier.
result = false
proc conceptMatch*(c: PContext; concpt, arg: PType; bindings: var TypeMapping; invocation: PType): bool =
## Entry point from sigmatch. 'concpt' is the concept we try to match (here still a PType but
## we extract its AST via 'concpt.n.lastSon'). 'arg' is the type that might fulfill the
## concept's requirements. If so, we return true and fill the 'bindings' with pairs of
## (typeVar, instance) pairs. ('typeVar' is usually simply written as a generic 'T'.)
## 'invocation' can be nil for atomic concepts. For non-atomic concepts, it contains the
## `C[S, T]` parent type that we look for. We need this because we need to store bindings
## for 'S' and 'T' inside 'bindings' on a successful match. It is very important that
## we do not add any bindings at all on an unsuccessful match!
var m = MatchCon(inferred: @[], potentialImplementation: arg)
result = conceptMatchNode(c, concpt.n.lastSon, m)
if result:
for (a, b) in m.inferred:
if b.kind == tyGenericParam:
var dest = b
while true:
dest = existingBinding(m, dest)
if dest == nil or dest.kind != tyGenericParam: break
if dest != nil:
bindings.idTablePut(a, dest)
when logBindings: echo "A bind ", a, " ", dest
else:
bindings.idTablePut(a, b)
when logBindings: echo "B bind ", a, " ", b
# we have a match, so bind 'arg' itself to 'concpt':
bindings.idTablePut(concpt, arg)
# invocation != nil means we have a non-atomic concept:
if invocation != nil and arg.kind == tyGenericInst and invocation.kidsLen == arg.kidsLen-1:
# bind even more generic parameters
assert invocation.kind == tyGenericInvocation
for i in FirstGenericParamAt ..< invocation.kidsLen:
bindings.idTablePut(invocation[i], arg[i])
|