1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
#
#
# The Nim Compiler
# (c) Copyright 2017 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Data flow analysis for Nim.
## We transform the AST into a linear list of instructions first to
## make this easier to handle: There are only 3 different branching
## instructions: 'goto X' is an unconditional goto, 'fork X'
## is a conditional goto (either the next instruction or 'X' can be
## taken), 'loop X' is the only jump that jumps back.
##
## Exhaustive case statements are translated
## so that the last branch is transformed into an 'else' branch.
## ``return`` and ``break`` are all covered by 'goto'.
##
## The data structures and algorithms used here are inspired by
## "A Graph–Free Approach to Data–Flow Analysis" by Markus Mohnen.
## https://link.springer.com/content/pdf/10.1007/3-540-45937-5_6.pdf
import ast, lineinfos, renderer, aliasanalysis
import std/private/asciitables
import std/intsets
when defined(nimPreviewSlimSystem):
import std/assertions
type
InstrKind* = enum
goto, loop, fork, def, use
Instr* = object
case kind*: InstrKind
of goto, fork, loop: dest*: int
of def, use:
n*: PNode # contains the def/use location.
ControlFlowGraph* = seq[Instr]
TPosition = distinct int
TBlock = object
case isTryBlock: bool
of false:
label: PSym
breakFixups: seq[(TPosition, seq[PNode])] # Contains the gotos for the breaks along with their pending finales
of true:
finale: PNode
raiseFixups: seq[TPosition] # Contains the gotos for the raises
Con = object
code: ControlFlowGraph
inTryStmt, interestingInstructions: int
blocks: seq[TBlock]
owner: PSym
root: PSym
proc codeListing(c: ControlFlowGraph, start = 0; last = -1): string =
# for debugging purposes
# first iteration: compute all necessary labels:
result = ""
var jumpTargets = initIntSet()
let last = if last < 0: c.len-1 else: min(last, c.len-1)
for i in start..last:
if c[i].kind in {goto, fork, loop}:
jumpTargets.incl(i+c[i].dest)
var i = start
while i <= last:
if i in jumpTargets: result.add("L" & $i & ":\n")
result.add "\t"
result.add ($i & " " & $c[i].kind)
result.add "\t"
case c[i].kind
of def, use:
result.add renderTree(c[i].n)
result.add("\t#")
result.add($c[i].n.info.line)
result.add("\n")
of goto, fork, loop:
result.add "L"
result.addInt c[i].dest+i
inc i
if i in jumpTargets: result.add("L" & $i & ": End\n")
proc echoCfg*(c: ControlFlowGraph; start = 0; last = -1) {.deprecated.} =
## echos the ControlFlowGraph for debugging purposes.
echo codeListing(c, start, last).alignTable
proc forkI(c: var Con): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(kind: fork, dest: 0)
proc gotoI(c: var Con): TPosition =
result = TPosition(c.code.len)
c.code.add Instr(kind: goto, dest: 0)
proc genLabel(c: Con): TPosition = TPosition(c.code.len)
template checkedDistance(dist): int =
doAssert low(int) div 2 + 1 < dist and dist < high(int) div 2
dist
proc jmpBack(c: var Con, p = TPosition(0)) =
c.code.add Instr(kind: loop, dest: checkedDistance(p.int - c.code.len))
proc patch(c: var Con, p: TPosition) =
# patch with current index
c.code[p.int].dest = checkedDistance(c.code.len - p.int)
proc gen(c: var Con; n: PNode)
proc popBlock(c: var Con; oldLen: int) =
var exits: seq[TPosition] = @[]
exits.add c.gotoI()
for f in c.blocks[oldLen].breakFixups:
c.patch(f[0])
for finale in f[1]:
c.gen(finale)
exits.add c.gotoI()
for e in exits:
c.patch e
c.blocks.setLen(oldLen)
template withBlock(labl: PSym; body: untyped) =
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: false, label: labl)
body
popBlock(c, oldLen)
template forkT(body) =
let lab1 = c.forkI()
body
c.patch(lab1)
proc genWhile(c: var Con; n: PNode) =
# lab1:
# cond, tmp
# fork tmp, lab2
# body
# jmp lab1
# lab2:
let lab1 = c.genLabel
withBlock(nil):
if isTrue(n[0]):
c.gen(n[1])
c.jmpBack(lab1)
else:
c.gen(n[0])
forkT:
c.gen(n[1])
c.jmpBack(lab1)
proc genIf(c: var Con, n: PNode) =
#[
if cond:
A
elif condB:
B
elif condC:
C
else:
D
cond
fork lab1
A
goto Lend
lab1:
condB
fork lab2
B
goto Lend2
lab2:
condC
fork L3
C
goto Lend3
L3:
D
]#
var endings: seq[TPosition] = @[]
let oldInteresting = c.interestingInstructions
let oldLen = c.code.len
for i in 0..<n.len:
let it = n[i]
c.gen(it[0])
if it.len == 2:
forkT:
c.gen(it.lastSon)
endings.add c.gotoI()
if oldInteresting == c.interestingInstructions:
setLen c.code, oldLen
else:
for i in countdown(endings.high, 0):
c.patch(endings[i])
proc genAndOr(c: var Con; n: PNode) =
# asgn dest, a
# fork lab1
# asgn dest, b
# lab1:
c.gen(n[1])
forkT:
c.gen(n[2])
proc genCase(c: var Con; n: PNode) =
# if (!expr1) goto lab1;
# thenPart
# goto LEnd
# lab1:
# if (!expr2) goto lab2;
# thenPart2
# goto LEnd
# lab2:
# elsePart
# Lend:
let isExhaustive = skipTypes(n[0].typ,
abstractVarRange-{tyTypeDesc}).kind notin {tyFloat..tyFloat128, tyString, tyCstring}
var endings: seq[TPosition] = @[]
c.gen(n[0])
let oldInteresting = c.interestingInstructions
let oldLen = c.code.len
for i in 1..<n.len:
let it = n[i]
if it.len == 1 or (i == n.len-1 and isExhaustive):
# treat the last branch as 'else' if this is an exhaustive case statement.
c.gen(it.lastSon)
else:
forkT:
c.gen(it.lastSon)
endings.add c.gotoI()
if oldInteresting == c.interestingInstructions:
setLen c.code, oldLen
else:
for i in countdown(endings.high, 0):
c.patch(endings[i])
proc genBlock(c: var Con; n: PNode) =
withBlock(n[0].sym):
c.gen(n[1])
proc genBreakOrRaiseAux(c: var Con, i: int, n: PNode) =
let lab1 = c.gotoI()
if c.blocks[i].isTryBlock:
c.blocks[i].raiseFixups.add lab1
else:
var trailingFinales: seq[PNode] = @[]
if c.inTryStmt > 0:
# Ok, we are in a try, lets see which (if any) try's we break out from:
for b in countdown(c.blocks.high, i):
if c.blocks[b].isTryBlock:
trailingFinales.add c.blocks[b].finale
c.blocks[i].breakFixups.add (lab1, trailingFinales)
proc genBreak(c: var Con; n: PNode) =
inc c.interestingInstructions
if n[0].kind == nkSym:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock and c.blocks[i].label == n[0].sym:
genBreakOrRaiseAux(c, i, n)
return
#globalError(n.info, "VM problem: cannot find 'break' target")
else:
for i in countdown(c.blocks.high, 0):
if not c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
proc genTry(c: var Con; n: PNode) =
var endings: seq[TPosition] = @[]
let oldLen = c.blocks.len
c.blocks.add TBlock(isTryBlock: true, finale: if n[^1].kind == nkFinally: n[^1] else: newNode(nkEmpty))
inc c.inTryStmt
c.gen(n[0])
dec c.inTryStmt
for f in c.blocks[oldLen].raiseFixups:
c.patch(f)
c.blocks.setLen oldLen
for i in 1..<n.len:
let it = n[i]
if it.kind != nkFinally:
forkT:
c.gen(it.lastSon)
endings.add c.gotoI()
for i in countdown(endings.high, 0):
c.patch(endings[i])
let fin = lastSon(n)
if fin.kind == nkFinally:
c.gen(fin[0])
template genNoReturn(c: var Con) =
# leave the graph
c.code.add Instr(kind: goto, dest: high(int) - c.code.len)
proc genRaise(c: var Con; n: PNode) =
inc c.interestingInstructions
gen(c, n[0])
if c.inTryStmt > 0:
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
return
assert false # Unreachable
else:
genNoReturn(c)
proc genImplicitReturn(c: var Con) =
if c.owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter} and resultPos < c.owner.ast.len:
gen(c, c.owner.ast[resultPos])
proc genReturn(c: var Con; n: PNode) =
inc c.interestingInstructions
if n[0].kind != nkEmpty:
gen(c, n[0])
else:
genImplicitReturn(c)
genBreakOrRaiseAux(c, 0, n)
const
InterestingSyms = {skVar, skResult, skLet, skParam, skForVar, skTemp}
proc skipTrivials(c: var Con, n: PNode): PNode =
result = n
while true:
case result.kind
of PathKinds0 - {nkBracketExpr}:
result = result[0]
of nkBracketExpr:
gen(c, result[1])
result = result[0]
of PathKinds1:
result = result[1]
else: break
proc genUse(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym:
if n.sym.kind in InterestingSyms and n.sym == c.root:
c.code.add Instr(kind: use, n: orig)
inc c.interestingInstructions
else:
gen(c, n)
proc genDef(c: var Con; orig: PNode) =
let n = c.skipTrivials(orig)
if n.kind == nkSym and n.sym.kind in InterestingSyms:
if n.sym == c.root:
c.code.add Instr(kind: def, n: orig)
inc c.interestingInstructions
proc genCall(c: var Con; n: PNode) =
gen(c, n[0])
var t = n[0].typ
if t != nil: t = t.skipTypes(abstractInst)
for i in 1..<n.len:
gen(c, n[i])
if t != nil and i < t.signatureLen and isOutParam(t[i]):
# Pass by 'out' is a 'must def'. Good enough for a move optimizer.
genDef(c, n[i])
# every call can potentially raise:
if c.inTryStmt > 0 and canRaiseConservative(n[0]):
inc c.interestingInstructions
# we generate the instruction sequence:
# fork lab1
# goto exceptionHandler (except or finally)
# lab1:
forkT:
for i in countdown(c.blocks.high, 0):
if c.blocks[i].isTryBlock:
genBreakOrRaiseAux(c, i, n)
break
proc genMagic(c: var Con; n: PNode; m: TMagic) =
case m
of mAnd, mOr: c.genAndOr(n)
of mNew, mNewFinalize:
genDef(c, n[1])
for i in 2..<n.len: gen(c, n[i])
else:
genCall(c, n)
proc genVarSection(c: var Con; n: PNode) =
for a in n:
if a.kind == nkCommentStmt:
discard
elif a.kind == nkVarTuple:
gen(c, a.lastSon)
for i in 0..<a.len-2: genDef(c, a[i])
else:
gen(c, a.lastSon)
if a.lastSon.kind != nkEmpty:
genDef(c, a[0])
proc gen(c: var Con; n: PNode) =
case n.kind
of nkSym: genUse(c, n)
of nkCallKinds:
if n[0].kind == nkSym:
let s = n[0].sym
if s.magic != mNone:
genMagic(c, n, s.magic)
else:
genCall(c, n)
if sfNoReturn in n[0].sym.flags:
genNoReturn(c)
else:
genCall(c, n)
of nkCharLit..nkNilLit: discard
of nkAsgn, nkFastAsgn, nkSinkAsgn:
gen(c, n[1])
if n[0].kind in PathKinds0:
let a = c.skipTrivials(n[0])
if a.kind in nkCallKinds:
gen(c, a)
# watch out: 'obj[i].f2 = value' sets 'f2' but
# "uses" 'i'. But we are only talking about builtin array indexing so
# it doesn't matter and 'x = 34' is NOT a usage of 'x'.
genDef(c, n[0])
of PathKinds0 - {nkObjDownConv, nkObjUpConv}:
genUse(c, n)
of nkIfStmt, nkIfExpr: genIf(c, n)
of nkWhenStmt:
# This is "when nimvm" node. Chose the first branch.
gen(c, n[0][1])
of nkCaseStmt: genCase(c, n)
of nkWhileStmt: genWhile(c, n)
of nkBlockExpr, nkBlockStmt: genBlock(c, n)
of nkReturnStmt: genReturn(c, n)
of nkRaiseStmt: genRaise(c, n)
of nkBreakStmt: genBreak(c, n)
of nkTryStmt, nkHiddenTryStmt: genTry(c, n)
of nkStmtList, nkStmtListExpr, nkChckRangeF, nkChckRange64, nkChckRange,
nkBracket, nkCurly, nkPar, nkTupleConstr, nkClosure, nkObjConstr, nkYieldStmt:
for x in n: gen(c, x)
of nkPragmaBlock: gen(c, n.lastSon)
of nkDiscardStmt, nkObjDownConv, nkObjUpConv, nkStringToCString, nkCStringToString:
gen(c, n[0])
of nkConv, nkExprColonExpr, nkExprEqExpr, nkCast, PathKinds1:
gen(c, n[1])
of nkVarSection, nkLetSection: genVarSection(c, n)
of nkDefer: raiseAssert "dfa construction pass requires the elimination of 'defer'"
else: discard
when false:
proc optimizeJumps(c: var ControlFlowGraph) =
for i in 0..<c.len:
case c[i].kind
of goto, fork:
var pc = i + c[i].dest
if pc < c.len and c[pc].kind == goto:
while pc < c.len and c[pc].kind == goto:
let newPc = pc + c[pc].dest
if newPc > pc:
pc = newPc
else:
break
c[i].dest = pc - i
of loop, def, use: discard
proc constructCfg*(s: PSym; body: PNode; root: PSym): ControlFlowGraph =
## constructs a control flow graph for ``body``.
var c = Con(code: @[], blocks: @[], owner: s, root: root)
withBlock(s):
gen(c, body)
if root.kind == skResult:
genImplicitReturn(c)
when defined(gcArc) or defined(gcOrc) or defined(gcAtomicArc):
result = c.code # will move
else:
shallowCopy(result, c.code)
when false:
optimizeJumps result
|