1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the 'implies' relation for guards.
import ast, astalgo, msgs, magicsys, nimsets, trees, types, renderer, idents,
saturate, modulegraphs, options, lineinfos, int128
when defined(nimPreviewSlimSystem):
import std/assertions
const
someEq = {mEqI, mEqF64, mEqEnum, mEqCh, mEqB, mEqRef, mEqProc,
mEqStr, mEqSet, mEqCString}
# set excluded here as the semantics are vastly different:
someLe = {mLeI, mLeF64, mLeU, mLeEnum,
mLeCh, mLeB, mLePtr, mLeStr}
someLt = {mLtI, mLtF64, mLtU, mLtEnum,
mLtCh, mLtB, mLtPtr, mLtStr}
someLen = {mLengthOpenArray, mLengthStr, mLengthArray, mLengthSeq}
someIn = {mInSet}
someHigh = {mHigh}
# we don't list unsigned here because wrap around semantics suck for
# proving anything:
someAdd = {mAddI, mAddF64, mSucc}
someSub = {mSubI, mSubF64, mPred}
someMul = {mMulI, mMulF64}
someDiv = {mDivI, mDivF64}
someMod = {mModI}
someMax = {mMaxI}
someMin = {mMinI}
someBinaryOp = someAdd+someSub+someMul+someMax+someMin
proc isValue(n: PNode): bool = n.kind in {nkCharLit..nkNilLit}
proc isLocation(n: PNode): bool = not n.isValue
proc isLet(n: PNode): bool =
if n.kind == nkSym:
if n.sym.kind in {skLet, skTemp, skForVar}:
result = true
elif n.sym.kind == skParam and skipTypes(n.sym.typ,
abstractInst).kind notin {tyVar}:
result = true
else:
result = false
else:
result = false
proc isVar(n: PNode): bool =
n.kind == nkSym and n.sym.kind in {skResult, skVar} and
{sfAddrTaken} * n.sym.flags == {}
proc isLetLocation(m: PNode, isApprox: bool): bool =
# consider: 'n[].kind' --> we really need to support 1 deref op even if this
# is technically wrong due to aliasing :-( We could introduce "soft" facts
# for this; this would still be very useful for warnings and also nicely
# solves the 'var' problems. For now we fix this by requiring much more
# restrictive expressions for the 'not nil' checking.
var n = m
var derefs = 0
while true:
case n.kind
of nkDotExpr, nkCheckedFieldExpr, nkObjUpConv, nkObjDownConv:
n = n[0]
of nkDerefExpr:
n = n[0]
inc derefs
of nkHiddenDeref:
n = n[0]
if not isApprox: inc derefs
of nkBracketExpr:
if isConstExpr(n[1]) or isLet(n[1]) or isConstExpr(n[1].skipConv):
n = n[0]
else: return
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
n = n[1]
else:
break
result = n.isLet and derefs <= ord(isApprox)
if not result and isApprox:
result = isVar(n)
proc interestingCaseExpr*(m: PNode): bool = isLetLocation(m, true)
proc swapArgs(fact: PNode, newOp: PSym): PNode =
result = newNodeI(nkCall, fact.info, 3)
result[0] = newSymNode(newOp)
result[1] = fact[2]
result[2] = fact[1]
proc neg(n: PNode; o: Operators): PNode =
if n == nil: return nil
case n.getMagic
of mNot:
result = n[1]
of someLt:
# not (a < b) == a >= b == b <= a
result = swapArgs(n, o.opLe)
of someLe:
result = swapArgs(n, o.opLt)
of mInSet:
if n[1].kind != nkCurly: return nil
let t = n[2].typ.skipTypes(abstractInst)
result = newNodeI(nkCall, n.info, 3)
result[0] = n[0]
result[2] = n[2]
if t.kind == tyEnum:
var s = newNodeIT(nkCurly, n.info, n[1].typ)
for e in t.n:
let eAsNode = newIntNode(nkIntLit, e.sym.position)
if not inSet(n[1], eAsNode): s.add eAsNode
result[1] = s
#elif t.kind notin {tyString, tySequence} and lengthOrd(t) < 1000:
# result[1] = complement(n[1])
else:
# not ({2, 3, 4}.contains(x)) x != 2 and x != 3 and x != 4
# XXX todo
result = nil
of mOr:
# not (a or b) --> not a and not b
let
a = n[1].neg(o)
b = n[2].neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result[0] = newSymNode(o.opAnd)
result[1] = a
result[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
else:
result = nil
else:
# leave not (a == 4) as it is
result = newNodeI(nkCall, n.info, 2)
result[0] = newSymNode(o.opNot)
result[1] = n
proc buildCall*(op: PSym; a: PNode): PNode =
result = newNodeI(nkCall, a.info, 2)
result[0] = newSymNode(op)
result[1] = a
proc buildCall*(op: PSym; a, b: PNode): PNode =
result = newNodeI(nkInfix, a.info, 3)
result[0] = newSymNode(op)
result[1] = a
result[2] = b
proc `|+|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |+| b.intVal
else: result.floatVal = a.floatVal + b.floatVal
proc `|-|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |-| b.intVal
else: result.floatVal = a.floatVal - b.floatVal
proc `|*|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal |*| b.intVal
else: result.floatVal = a.floatVal * b.floatVal
proc `|div|`(a, b: PNode): PNode =
result = copyNode(a)
if a.kind in {nkCharLit..nkUInt64Lit}: result.intVal = a.intVal div b.intVal
else: result.floatVal = a.floatVal / b.floatVal
proc negate(a, b, res: PNode; o: Operators): PNode =
if b.kind in {nkCharLit..nkUInt64Lit} and b.intVal != low(BiggestInt):
var b = copyNode(b)
b.intVal = -b.intVal
if a.kind in {nkCharLit..nkUInt64Lit}:
b.intVal = b.intVal |+| a.intVal
result = b
else:
result = buildCall(o.opAdd, a, b)
elif b.kind in {nkFloatLit..nkFloat64Lit}:
var b = copyNode(b)
b.floatVal = -b.floatVal
result = buildCall(o.opAdd, a, b)
else:
result = res
proc zero(): PNode = nkIntLit.newIntNode(0)
proc one(): PNode = nkIntLit.newIntNode(1)
proc minusOne(): PNode = nkIntLit.newIntNode(-1)
proc lowBound*(conf: ConfigRef; x: PNode): PNode =
result = nkIntLit.newIntNode(firstOrd(conf, x.typ))
result.info = x.info
proc highBound*(conf: ConfigRef; x: PNode; o: Operators): PNode =
let typ = x.typ.skipTypes(abstractInst)
result = if typ.kind == tyArray:
nkIntLit.newIntNode(lastOrd(conf, typ))
elif typ.kind == tySequence and x.kind == nkSym and
x.sym.kind == skConst:
nkIntLit.newIntNode(x.sym.astdef.len-1)
else:
o.opAdd.buildCall(o.opLen.buildCall(x), minusOne())
result.info = x.info
proc reassociation(n: PNode; o: Operators): PNode =
result = n
# (foo+5)+5 --> foo+10; same for '*'
case result.getMagic
of someAdd:
if result[2].isValue and
result[1].getMagic in someAdd and result[1][2].isValue:
result = o.opAdd.buildCall(result[1][1], result[1][2] |+| result[2])
if result[2].intVal == 0:
result = result[1]
of someMul:
if result[2].isValue and
result[1].getMagic in someMul and result[1][2].isValue:
result = o.opMul.buildCall(result[1][1], result[1][2] |*| result[2])
if result[2].intVal == 1:
result = result[1]
elif result[2].intVal == 0:
result = zero()
else: discard
proc pred(n: PNode): PNode =
if n.kind in {nkCharLit..nkUInt64Lit} and n.intVal != low(BiggestInt):
result = copyNode(n)
dec result.intVal
else:
result = n
proc buildLe*(o: Operators; a, b: PNode): PNode =
result = o.opLe.buildCall(a, b)
proc canon*(n: PNode; o: Operators): PNode =
if n.safeLen >= 1:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = canon(n[i], o)
elif n.kind == nkSym and n.sym.kind == skLet and
n.sym.astdef.getMagic in (someEq + someAdd + someMul + someMin +
someMax + someHigh + someSub + someLen + someDiv):
result = n.sym.astdef.copyTree
else:
result = n
case result.getMagic
of someEq, someAdd, someMul, someMin, someMax:
# these are symmetric; put value as last:
if result[1].isValue and not result[2].isValue:
result = swapArgs(result, result[0].sym)
# (4 + foo) + 2 --> (foo + 4) + 2
of someHigh:
# high == len+(-1)
result = o.opAdd.buildCall(o.opLen.buildCall(result[1]), minusOne())
of someSub:
# x - 4 --> x + (-4)
result = negate(result[1], result[2], result, o)
of someLen:
result[0] = o.opLen.newSymNode
of someLt - {mLtF64}:
# x < y same as x <= y-1:
let y = n[2].canon(o)
let p = pred(y)
let minus = if p != y: p else: o.opAdd.buildCall(y, minusOne()).canon(o)
result = o.opLe.buildCall(n[1].canon(o), minus)
else: discard
result = skipConv(result)
result = reassociation(result, o)
# most important rule: (x-4) <= a.len --> x <= a.len+4
case result.getMagic
of someLe:
let x = result[1]
let y = result[2]
if x.kind in nkCallKinds and x.len == 3 and x[2].isValue and
isLetLocation(x[1], true):
case x.getMagic
of someSub:
result = buildCall(result[0].sym, x[1],
reassociation(o.opAdd.buildCall(y, x[2]), o))
of someAdd:
# Rule A:
let plus = negate(y, x[2], nil, o).reassociation(o)
if plus != nil: result = buildCall(result[0].sym, x[1], plus)
else: discard
elif y.kind in nkCallKinds and y.len == 3 and y[2].isValue and
isLetLocation(y[1], true):
# a.len < x-3
case y.getMagic
of someSub:
result = buildCall(result[0].sym, y[1],
reassociation(o.opAdd.buildCall(x, y[2]), o))
of someAdd:
let plus = negate(x, y[2], nil, o).reassociation(o)
# ensure that Rule A will not trigger afterwards with the
# additional 'not isLetLocation' constraint:
if plus != nil and not isLetLocation(x, true):
result = buildCall(result[0].sym, plus, y[1])
else: discard
elif x.isValue and y.getMagic in someAdd and y[2].kind == x.kind:
# 0 <= a.len + 3
# -3 <= a.len
result[1] = x |-| y[2]
result[2] = y[1]
elif x.isValue and y.getMagic in someSub and y[2].kind == x.kind:
# 0 <= a.len - 3
# 3 <= a.len
result[1] = x |+| y[2]
result[2] = y[1]
else: discard
proc buildAdd*(a: PNode; b: BiggestInt; o: Operators): PNode =
canon(if b != 0: o.opAdd.buildCall(a, nkIntLit.newIntNode(b)) else: a, o)
proc usefulFact(n: PNode; o: Operators): PNode =
case n.getMagic
of someEq:
if skipConv(n[2]).kind == nkNilLit and (
isLetLocation(n[1], false) or isVar(n[1])):
result = o.opIsNil.buildCall(n[1])
else:
if isLetLocation(n[1], true) or isLetLocation(n[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
elif n[1].getMagic in someLen or n[2].getMagic in someLen:
result = n
else:
result = nil
of someLe+someLt:
if isLetLocation(n[1], true) or isLetLocation(n[2], true):
# XXX algebraic simplifications! 'i-1 < a.len' --> 'i < a.len+1'
result = n
elif n[1].getMagic in someLen or n[2].getMagic in someLen:
# XXX Rethink this whole idea of 'usefulFact' for semparallel
result = n
else:
result = nil
of mIsNil:
if isLetLocation(n[1], false) or isVar(n[1]):
result = n
else:
result = nil
of someIn:
if isLetLocation(n[1], true):
result = n
else:
result = nil
of mAnd:
let
a = usefulFact(n[1], o)
b = usefulFact(n[2], o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result[0] = newSymNode(o.opAnd)
result[1] = a
result[2] = b
elif a != nil:
result = a
elif b != nil:
result = b
else:
result = nil
of mNot:
let a = usefulFact(n[1], o)
if a != nil:
result = a.neg(o)
else:
result = nil
of mOr:
# 'or' sucks! (p.isNil or q.isNil) --> hard to do anything
# with that knowledge...
# DeMorgan helps a little though:
# not a or not b --> not (a and b)
# (x == 3) or (y == 2) ---> not ( not (x==3) and not (y == 2))
# not (x != 3 and y != 2)
let
a = usefulFact(n[1], o).neg(o)
b = usefulFact(n[2], o).neg(o)
if a != nil and b != nil:
result = newNodeI(nkCall, n.info, 3)
result[0] = newSymNode(o.opAnd)
result[1] = a
result[2] = b
result = result.neg(o)
else:
result = nil
elif n.kind == nkSym and n.sym.kind == skLet:
# consider:
# let a = 2 < x
# if a:
# ...
# We make can easily replace 'a' by '2 < x' here:
if n.sym.astdef != nil:
result = usefulFact(n.sym.astdef, o)
else:
result = nil
elif n.kind == nkStmtListExpr:
result = usefulFact(n.lastSon, o)
else:
result = nil
type
TModel* = object
s*: seq[PNode] # the "knowledge base"
g*: ModuleGraph
beSmart*: bool
proc addFact*(m: var TModel, nn: PNode) =
let n = usefulFact(nn, m.g.operators)
if n != nil:
if not m.beSmart:
m.s.add n
else:
let c = canon(n, m.g.operators)
if c.getMagic == mAnd:
addFact(m, c[1])
addFact(m, c[2])
else:
m.s.add c
proc addFactNeg*(m: var TModel, n: PNode) =
let n = n.neg(m.g.operators)
if n != nil: addFact(m, n)
proc sameOpr(a, b: PSym): bool =
case a.magic
of someEq: result = b.magic in someEq
of someLe: result = b.magic in someLe
of someLt: result = b.magic in someLt
of someLen: result = b.magic in someLen
of someAdd: result = b.magic in someAdd
of someSub: result = b.magic in someSub
of someMul: result = b.magic in someMul
of someDiv: result = b.magic in someDiv
else: result = a == b
proc sameTree*(a, b: PNode): bool =
result = false
if a == b:
result = true
elif a != nil and b != nil and a.kind == b.kind:
case a.kind
of nkSym:
result = a.sym == b.sym
if not result and a.sym.magic != mNone:
result = a.sym.magic == b.sym.magic or sameOpr(a.sym, b.sym)
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkUInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkType: result = a.typ == b.typ
of nkEmpty, nkNilLit: result = true
else:
if a.len == b.len:
for i in 0..<a.len:
if not sameTree(a[i], b[i]): return
result = true
proc hasSubTree(n, x: PNode): bool =
if n.sameTree(x): result = true
else:
case n.kind
of nkEmpty..nkNilLit:
result = n.sameTree(x)
of nkFormalParams:
result = false
else:
result = false
for i in 0..<n.len:
if hasSubTree(n[i], x): return true
proc invalidateFacts*(s: var seq[PNode], n: PNode) =
# We are able to guard local vars (as opposed to 'let' variables)!
# 'while p != nil: f(p); p = p.next'
# This is actually quite easy to do:
# Re-assignments (incl. pass to a 'var' param) trigger an invalidation
# of every fact that contains 'v'.
#
# if x < 4:
# if y < 5
# x = unknown()
# # we invalidate 'x' here but it's known that x >= 4
# # for the else anyway
# else:
# echo x
#
# The same mechanism could be used for more complex data stored on the heap;
# procs that 'write: []' cannot invalidate 'n.kind' for instance. In fact, we
# could CSE these expressions then and help C's optimizer.
for i in 0..high(s):
if s[i] != nil and s[i].hasSubTree(n): s[i] = nil
proc invalidateFacts*(m: var TModel, n: PNode) =
invalidateFacts(m.s, n)
proc valuesUnequal(a, b: PNode): bool =
if a.isValue and b.isValue:
result = not sameValue(a, b)
else:
result = false
proc impliesEq(fact, eq: PNode): TImplication =
let (loc, val) = if isLocation(eq[1]): (1, 2) else: (2, 1)
case fact[0].sym.magic
of someEq:
if sameTree(fact[1], eq[loc]):
# this is not correct; consider: a == b; a == 1 --> unknown!
if sameTree(fact[2], eq[val]): result = impYes
elif valuesUnequal(fact[2], eq[val]): result = impNo
else:
result = impUnknown
elif sameTree(fact[2], eq[loc]):
if sameTree(fact[1], eq[val]): result = impYes
elif valuesUnequal(fact[1], eq[val]): result = impNo
else:
result = impUnknown
else:
result = impUnknown
of mInSet:
# remember: mInSet is 'contains' so the set comes first!
if sameTree(fact[2], eq[loc]) and isValue(eq[val]):
if inSet(fact[1], eq[val]): result = impYes
else: result = impNo
else:
result = impUnknown
of mNot, mOr, mAnd:
result = impUnknown
assert(false, "impliesEq")
else: result = impUnknown
proc leImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x <= 4; question x in {56}?
# --> true if every value <= 4 is in the set {56}
#
var value = newIntNode(c.kind, firstOrd(nil, x.typ))
# don't iterate too often:
if c.intVal - value.intVal < 1000:
var i, pos, neg: int = 0
while value.intVal <= c.intVal:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
else:
result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
proc geImpliesIn(x, c, aSet: PNode): TImplication =
if c.kind in {nkCharLit..nkUInt64Lit}:
# fact: x >= 4; question x in {56}?
# --> true iff every value >= 4 is in the set {56}
#
var value = newIntNode(c.kind, c.intVal)
let max = lastOrd(nil, x.typ)
# don't iterate too often:
if max - getInt(value) < toInt128(1000):
var i, pos, neg: int = 0
while value.intVal <= max:
if inSet(aSet, value): inc pos
else: inc neg
inc i; inc value.intVal
if pos == i: result = impYes
elif neg == i: result = impNo
else: result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
proc compareSets(a, b: PNode): TImplication =
if equalSets(nil, a, b): result = impYes
elif intersectSets(nil, a, b).len == 0: result = impNo
else: result = impUnknown
proc impliesIn(fact, loc, aSet: PNode): TImplication =
case fact[0].sym.magic
of someEq:
if sameTree(fact[1], loc):
if inSet(aSet, fact[2]): result = impYes
else: result = impNo
elif sameTree(fact[2], loc):
if inSet(aSet, fact[1]): result = impYes
else: result = impNo
else:
result = impUnknown
of mInSet:
if sameTree(fact[2], loc):
result = compareSets(fact[1], aSet)
else:
result = impUnknown
of someLe:
if sameTree(fact[1], loc):
result = leImpliesIn(fact[1], fact[2], aSet)
elif sameTree(fact[2], loc):
result = geImpliesIn(fact[2], fact[1], aSet)
else:
result = impUnknown
of someLt:
if sameTree(fact[1], loc):
result = leImpliesIn(fact[1], fact[2].pred, aSet)
elif sameTree(fact[2], loc):
# 4 < x --> 3 <= x
result = geImpliesIn(fact[2], fact[1].pred, aSet)
else:
result = impUnknown
of mNot, mOr, mAnd:
result = impUnknown
assert(false, "impliesIn")
else: result = impUnknown
proc valueIsNil(n: PNode): TImplication =
if n.kind == nkNilLit: impYes
elif n.kind in {nkStrLit..nkTripleStrLit, nkBracket, nkObjConstr}: impNo
else: impUnknown
proc impliesIsNil(fact, eq: PNode): TImplication =
case fact[0].sym.magic
of mIsNil:
if sameTree(fact[1], eq[1]):
result = impYes
else:
result = impUnknown
of someEq:
if sameTree(fact[1], eq[1]):
result = valueIsNil(fact[2].skipConv)
elif sameTree(fact[2], eq[1]):
result = valueIsNil(fact[1].skipConv)
else:
result = impUnknown
of mNot, mOr, mAnd:
result = impUnknown
assert(false, "impliesIsNil")
else: result = impUnknown
proc impliesGe(fact, x, c: PNode): TImplication =
assert isLocation(x)
case fact[0].sym.magic
of someEq:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x = 4; question x >= 56? --> true iff 4 >= 56
if leValue(c, fact[2]): result = impYes
else: result = impNo
else:
result = impUnknown
elif sameTree(fact[2], x):
if isValue(fact[1]) and isValue(c):
if leValue(c, fact[1]): result = impYes
else: result = impNo
else:
result = impUnknown
else:
result = impUnknown
of someLt:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x < 4; question N <= x? --> false iff N <= 4
if leValue(fact[2], c): result = impNo
else: result = impUnknown
# fact: x < 4; question 2 <= x? --> we don't know
else:
result = impUnknown
elif sameTree(fact[2], x):
# fact: 3 < x; question: N-1 < x ? --> true iff N-1 <= 3
if isValue(fact[1]) and isValue(c):
if leValue(c.pred, fact[1]): result = impYes
else: result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
of someLe:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x <= 4; question x >= 56? --> false iff 4 <= 56
if leValue(fact[2], c): result = impNo
# fact: x <= 4; question x >= 2? --> we don't know
else:
result = impUnknown
else:
result = impUnknown
elif sameTree(fact[2], x):
# fact: 3 <= x; question: x >= 2 ? --> true iff 2 <= 3
if isValue(fact[1]) and isValue(c):
if leValue(c, fact[1]): result = impYes
else: result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
of mNot, mOr, mAnd:
result = impUnknown
assert(false, "impliesGe")
else: result = impUnknown
proc impliesLe(fact, x, c: PNode): TImplication =
if not isLocation(x):
if c.isValue:
if leValue(x, x): return impYes
else: return impNo
return impliesGe(fact, c, x)
case fact[0].sym.magic
of someEq:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x = 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact[2], c): result = impYes
else: result = impNo
else:
result = impUnknown
elif sameTree(fact[2], x):
if isValue(fact[1]) and isValue(c):
if leValue(fact[1], c): result = impYes
else: result = impNo
else:
result = impUnknown
else:
result = impUnknown
of someLt:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x < 4; question x <= N? --> true iff N-1 <= 4
if leValue(fact[2], c.pred): result = impYes
else:
result = impUnknown
# fact: x < 4; question x <= 2? --> we don't know
else:
result = impUnknown
elif sameTree(fact[2], x):
# fact: 3 < x; question: x <= 1 ? --> false iff 1 <= 3
if isValue(fact[1]) and isValue(c):
if leValue(c, fact[1]): result = impNo
else: result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
of someLe:
if sameTree(fact[1], x):
if isValue(fact[2]) and isValue(c):
# fact: x <= 4; question x <= 56? --> true iff 4 <= 56
if leValue(fact[2], c): result = impYes
else: result = impUnknown
# fact: x <= 4; question x <= 2? --> we don't know
else:
result = impUnknown
elif sameTree(fact[2], x):
# fact: 3 <= x; question: x <= 2 ? --> false iff 2 < 3
if isValue(fact[1]) and isValue(c):
if leValue(c, fact[1].pred): result = impNo
else:result = impUnknown
else:
result = impUnknown
else:
result = impUnknown
of mNot, mOr, mAnd:
result = impUnknown
assert(false, "impliesLe")
else: result = impUnknown
proc impliesLt(fact, x, c: PNode): TImplication =
# x < 3 same as x <= 2:
let p = c.pred
if p != c:
result = impliesLe(fact, x, p)
else:
# 4 < x same as 3 <= x
let q = x.pred
if q != x:
result = impliesLe(fact, q, c)
else:
result = impUnknown
proc `~`(x: TImplication): TImplication =
case x
of impUnknown: impUnknown
of impNo: impYes
of impYes: impNo
proc factImplies(fact, prop: PNode): TImplication =
case fact.getMagic
of mNot:
# Consider:
# enum nkBinary, nkTernary, nkStr
# fact: not (k <= nkBinary)
# question: k in {nkStr}
# --> 'not' for facts is entirely different than 'not' for questions!
# it's provably wrong if every value > 4 is in the set {56}
# That's because we compute the implication and 'a -> not b' cannot
# be treated the same as 'not a -> b'
# (not a) -> b compute as not (a -> b) ???
# == not a or not b == not (a and b)
let arg = fact[1]
case arg.getMagic
of mIsNil, mEqRef:
return ~factImplies(arg, prop)
of mAnd:
# not (a and b) means not a or not b:
# a or b --> both need to imply 'prop'
let a = factImplies(arg[1], prop)
let b = factImplies(arg[2], prop)
if a == b: return ~a
return impUnknown
else:
return impUnknown
of mAnd:
result = factImplies(fact[1], prop)
if result != impUnknown: return result
return factImplies(fact[2], prop)
else: discard
case prop[0].sym.magic
of mNot: result = ~fact.factImplies(prop[1])
of mIsNil: result = impliesIsNil(fact, prop)
of someEq: result = impliesEq(fact, prop)
of someLe: result = impliesLe(fact, prop[1], prop[2])
of someLt: result = impliesLt(fact, prop[1], prop[2])
of mInSet: result = impliesIn(fact, prop[2], prop[1])
else: result = impUnknown
proc doesImply*(facts: TModel, prop: PNode): TImplication =
assert prop.kind in nkCallKinds
result = impUnknown
for f in facts.s:
# facts can be invalidated, in which case they are 'nil':
if not f.isNil:
result = f.factImplies(prop)
if result != impUnknown: return
proc impliesNotNil*(m: TModel, arg: PNode): TImplication =
result = doesImply(m, m.g.operators.opIsNil.buildCall(arg).neg(m.g.operators))
proc simpleSlice*(a, b: PNode): BiggestInt =
# returns 'c' if a..b matches (i+c)..(i+c), -1 otherwise. (i)..(i) is matched
# as if it is (i+0)..(i+0).
if guards.sameTree(a, b):
if a.getMagic in someAdd and a[2].kind in {nkCharLit..nkUInt64Lit}:
result = a[2].intVal
else:
result = 0
else:
result = -1
template isMul(x): untyped = x.getMagic in someMul
template isDiv(x): untyped = x.getMagic in someDiv
template isAdd(x): untyped = x.getMagic in someAdd
template isSub(x): untyped = x.getMagic in someSub
template isVal(x): untyped = x.kind in {nkCharLit..nkUInt64Lit}
template isIntVal(x, y): untyped = x.intVal == y
import std/macros
macro `=~`(x: PNode, pat: untyped): bool =
proc m(x, pat, conds: NimNode) =
case pat.kind
of nnkInfix:
case $pat[0]
of "*": conds.add getAst(isMul(x))
of "/": conds.add getAst(isDiv(x))
of "+": conds.add getAst(isAdd(x))
of "-": conds.add getAst(isSub(x))
else:
error("invalid pattern")
m(newTree(nnkBracketExpr, x, newLit(1)), pat[1], conds)
m(newTree(nnkBracketExpr, x, newLit(2)), pat[2], conds)
of nnkPar:
if pat.len == 1:
m(x, pat[0], conds)
else:
error("invalid pattern")
of nnkIdent:
let c = newTree(nnkStmtListExpr, newLetStmt(pat, x))
conds.add c
# XXX why is this 'isVal(pat)' and not 'isVal(x)'?
if ($pat)[^1] == 'c': c.add(getAst(isVal(x)))
else: c.add bindSym"true"
of nnkIntLit:
conds.add(getAst(isIntVal(x, pat.intVal)))
else:
error("invalid pattern")
var conds = newTree(nnkBracket)
m(x, pat, conds)
result = nestList(ident"and", conds)
proc isMinusOne(n: PNode): bool =
n.kind in {nkCharLit..nkUInt64Lit} and n.intVal == -1
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication
proc ple(m: TModel; a, b: PNode): TImplication =
template `<=?`(a,b): untyped = ple(m,a,b) == impYes
template `>=?`(a,b): untyped = ple(m, nkIntLit.newIntNode(b), a) == impYes
# 0 <= 3
if a.isValue and b.isValue:
return if leValue(a, b): impYes else: impNo
# use type information too: x <= 4 iff high(x) <= 4
if b.isValue and a.typ != nil and a.typ.isOrdinalType:
if lastOrd(nil, a.typ) <= b.intVal: return impYes
# 3 <= x iff low(x) <= 3
if a.isValue and b.typ != nil and b.typ.isOrdinalType:
if a.intVal <= firstOrd(nil, b.typ): return impYes
# x <= x
if sameTree(a, b): return impYes
# 0 <= x.len
if b.getMagic in someLen and a.isValue:
if a.intVal <= 0: return impYes
# x <= y+c if 0 <= c and x <= y
# x <= y+(-c) if c <= 0 and y >= x
if b.getMagic in someAdd:
if zero() <=? b[2] and a <=? b[1]: return impYes
# x <= y-c if x+c <= y
if b[2] <=? zero() and (canon(m.g.operators.opSub.buildCall(a, b[2]), m.g.operators) <=? b[1]):
return impYes
# x+c <= y if c <= 0 and x <= y
if a.getMagic in someAdd and a[2] <=? zero() and a[1] <=? b: return impYes
# x <= y*c if 1 <= c and x <= y and 0 <= y
if b.getMagic in someMul:
if a <=? b[1] and one() <=? b[2] and zero() <=? b[1]: return impYes
if a.getMagic in someMul and a[2].isValue and a[1].getMagic in someDiv and
a[1][2].isValue:
# simplify (x div 4) * 2 <= y to x div (c div d) <= y
if ple(m, buildCall(m.g.operators.opDiv, a[1][1], `|div|`(a[1][2], a[2])), b) == impYes:
return impYes
# x*3 + x == x*4. It follows that:
# x*3 + y <= x*4 if y <= x and 3 <= 4
if a =~ x*dc + y and b =~ x2*ec:
if sameTree(x, x2):
let ec1 = m.g.operators.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? x:
return impYes
elif a =~ x*dc and b =~ x2*ec + y:
#echo "BUG cam ehrer e ", a, " <=? ", b
if sameTree(x, x2):
let ec1 = m.g.operators.opAdd.buildCall(ec, minusOne())
if x >=? 1 and ec >=? 1 and dc >=? 1 and dc <=? ec1 and y <=? zero():
return impYes
# x+c <= x+d if c <= d. Same for *, - etc.
if a.getMagic in someBinaryOp and a.getMagic == b.getMagic:
if sameTree(a[1], b[1]) and a[2] <=? b[2]: return impYes
elif sameTree(a[2], b[2]) and a[1] <=? b[1]: return impYes
# x div c <= y if 1 <= c and 0 <= y and x <= y:
if a.getMagic in someDiv:
if one() <=? a[2] and zero() <=? b and a[1] <=? b: return impYes
# x div c <= x div d if d <= c
if b.getMagic in someDiv:
if sameTree(a[1], b[1]) and b[2] <=? a[2]: return impYes
# x div z <= x - 1 if z <= x
if a[2].isValue and b.getMagic in someAdd and b[2].isMinusOne:
if a[2] <=? a[1] and sameTree(a[1], b[1]): return impYes
# slightly subtle:
# x <= max(y, z) iff x <= y or x <= z
# note that 'x <= max(x, z)' is a special case of the above rule
if b.getMagic in someMax:
if a <=? b[1] or a <=? b[2]: return impYes
# min(x, y) <= z iff x <= z or y <= z
if a.getMagic in someMin:
if a[1] <=? b or a[2] <=? b: return impYes
# use the knowledge base:
return pleViaModel(m, a, b)
#return doesImply(m, o.opLe.buildCall(a, b))
type TReplacements = seq[tuple[a, b: PNode]]
proc replaceSubTree(n, x, by: PNode): PNode =
if sameTree(n, x):
result = by
elif hasSubTree(n, x):
result = shallowCopy(n)
for i in 0..n.safeLen-1:
result[i] = replaceSubTree(n[i], x, by)
else:
result = n
proc applyReplacements(n: PNode; rep: TReplacements): PNode =
result = n
for x in rep: result = result.replaceSubTree(x.a, x.b)
proc pleViaModelRec(m: var TModel; a, b: PNode): TImplication =
# now check for inferrable facts: a <= b and b <= c implies a <= c
result = impUnknown
for i in 0..m.s.high:
let fact = m.s[i]
if fact != nil and fact.getMagic in someLe:
# mark as used:
m.s[i] = nil
# i <= len-100
# i <=? len-1
# --> true if (len-100) <= (len-1)
let x = fact[1]
let y = fact[2]
# x <= y.
# Question: x <= b? True iff y <= b.
if sameTree(x, a):
if ple(m, y, b) == impYes: return impYes
if y.getMagic in someAdd and b.getMagic in someAdd and sameTree(y[1], b[1]):
if ple(m, b[2], y[2]) == impYes:
return impYes
# x <= y implies a <= b if a <= x and y <= b
if ple(m, a, x) == impYes:
if ple(m, y, b) == impYes:
return impYes
#if pleViaModelRec(m, y, b): return impYes
# fact: 16 <= i
# x y
# question: i <= 15? no!
result = impliesLe(fact, a, b)
if result != impUnknown:
return result
when false:
# given: x <= y; y==a; x <= a this means: a <= b if x <= b
if sameTree(y, a):
result = ple(m, b, x)
if result != impUnknown:
return result
proc pleViaModel(model: TModel; aa, bb: PNode): TImplication =
# compute replacements:
var replacements: TReplacements = @[]
for fact in model.s:
if fact != nil and fact.getMagic in someEq:
let a = fact[1]
let b = fact[2]
if a.kind == nkSym: replacements.add((a,b))
else: replacements.add((b,a))
var m = TModel()
var a = aa
var b = bb
if replacements.len > 0:
m.s = @[]
m.g = model.g
# make the other facts consistent:
for fact in model.s:
if fact != nil and fact.getMagic notin someEq:
# XXX 'canon' should not be necessary here, but it is
m.s.add applyReplacements(fact, replacements).canon(m.g.operators)
a = applyReplacements(aa, replacements)
b = applyReplacements(bb, replacements)
else:
# we have to make a copy here, because the model will be modified:
m = model
result = pleViaModelRec(m, a, b)
proc proveLe*(m: TModel; a, b: PNode): TImplication =
let x = canon(m.g.operators.opLe.buildCall(a, b), m.g.operators)
#echo "ROOT ", renderTree(x[1]), " <=? ", renderTree(x[2])
result = ple(m, x[1], x[2])
if result == impUnknown:
# try an alternative: a <= b iff not (b < a) iff not (b+1 <= a):
let y = canon(m.g.operators.opLe.buildCall(m.g.operators.opAdd.buildCall(b, one()), a), m.g.operators)
result = ~ple(m, y[1], y[2])
proc addFactLe*(m: var TModel; a, b: PNode) =
m.s.add canon(m.g.operators.opLe.buildCall(a, b), m.g.operators)
proc addFactLt*(m: var TModel; a, b: PNode) =
let bb = m.g.operators.opAdd.buildCall(b, minusOne())
addFactLe(m, a, bb)
proc settype(n: PNode): PType =
var idgen = idGeneratorForPackage(-1'i32)
result = newType(tySet, idgen, n.typ.owner)
addSonSkipIntLit(result, n.typ, idgen)
proc buildOf(it, loc: PNode; o: Operators): PNode =
var s = newNodeI(nkCurly, it.info, it.len-1)
s.typ = settype(loc)
for i in 0..<it.len-1: s[i] = it[i]
result = newNodeI(nkCall, it.info, 3)
result[0] = newSymNode(o.opContains)
result[1] = s
result[2] = loc
proc buildElse(n: PNode; o: Operators): PNode =
var s = newNodeIT(nkCurly, n.info, settype(n[0]))
for i in 1..<n.len-1:
let branch = n[i]
assert branch.kind != nkElse
if branch.kind == nkOfBranch:
for j in 0..<branch.len-1:
s.add(branch[j])
result = newNodeI(nkCall, n.info, 3)
result[0] = newSymNode(o.opContains)
result[1] = s
result[2] = n[0]
proc addDiscriminantFact*(m: var TModel, n: PNode) =
var fact = newNodeI(nkCall, n.info, 3)
fact[0] = newSymNode(m.g.operators.opEq)
fact[1] = n[0]
fact[2] = n[1]
m.s.add fact
proc addAsgnFact*(m: var TModel, key, value: PNode) =
var fact = newNodeI(nkCall, key.info, 3)
fact[0] = newSymNode(m.g.operators.opEq)
fact[1] = key
fact[2] = value
m.s.add fact
proc sameSubexprs*(m: TModel; a, b: PNode): bool =
# This should be used to check whether two *path expressions* refer to the
# same memory location according to 'm'. This is tricky:
# lock a[i].guard:
# ...
# access a[i].guarded
#
# Here a[i] is the same as a[i] iff 'i' and 'a' are not changed via '...'.
# However, nil checking requires exactly the same mechanism! But for now
# we simply use sameTree and live with the unsoundness of the analysis.
var check = newNodeI(nkCall, a.info, 3)
check[0] = newSymNode(m.g.operators.opEq)
check[1] = a
check[2] = b
result = m.doesImply(check) == impYes
proc addCaseBranchFacts*(m: var TModel, n: PNode, i: int) =
let branch = n[i]
if branch.kind == nkOfBranch:
m.s.add buildOf(branch, n[0], m.g.operators)
else:
m.s.add n.buildElse(m.g.operators).neg(m.g.operators)
proc buildProperFieldCheck(access, check: PNode; o: Operators): PNode =
if check[1].kind == nkCurly:
result = copyTree(check)
if access.kind == nkDotExpr:
var a = copyTree(access)
a[1] = check[2]
result[2] = a
# 'access.kind != nkDotExpr' can happen for object constructors
# which we don't check yet
else:
# it is some 'not'
assert check.getMagic == mNot
result = buildProperFieldCheck(access, check[1], o).neg(o)
proc checkFieldAccess*(m: TModel, n: PNode; conf: ConfigRef; produceError: bool) =
for i in 1..<n.len:
let check = buildProperFieldCheck(n[0], n[i], m.g.operators)
if check != nil and m.doesImply(check) != impYes:
if produceError:
localError(conf, n.info, "field access outside of valid case branch: " & renderTree(n[0]))
else:
message(conf, n.info, warnProveField, renderTree(n[0]))
break
|