1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the pattern matching features for term rewriting
## macro support.
import ast, types, msgs, idents, renderer, wordrecg, trees,
options
import std/strutils
# we precompile the pattern here for efficiency into some internal
# stack based VM :-) Why? Because it's fun; I did no benchmarks to see if that
# actually improves performance.
type
TAliasRequest* = enum # first byte of the bytecode determines alias checking
aqNone = 1, # no alias analysis requested
aqShouldAlias, # with some other param
aqNoAlias # request noalias
TOpcode = enum
ppEof = 1, # end of compiled pattern
ppOr, # we could short-cut the evaluation for 'and' and 'or',
ppAnd, # but currently we don't
ppNot,
ppSym,
ppAtom,
ppLit,
ppIdent,
ppCall,
ppSymKind,
ppNodeKind,
ppLValue,
ppLocal,
ppSideEffect,
ppNoSideEffect
TPatternCode = string
const
MaxStackSize* = 64 ## max required stack size by the VM
proc patternError(n: PNode; conf: ConfigRef) =
localError(conf, n.info, "illformed AST: " & renderTree(n, {renderNoComments}))
proc add(code: var TPatternCode, op: TOpcode) {.inline.} =
code.add chr(ord(op))
proc whichAlias*(p: PSym): TAliasRequest =
if p.constraint != nil:
result = TAliasRequest(p.constraint.strVal[0].ord)
else:
result = aqNone
proc compileConstraints(p: PNode, result: var TPatternCode; conf: ConfigRef) =
case p.kind
of nkCallKinds:
if p[0].kind != nkIdent:
patternError(p[0], conf)
return
let op = p[0].ident
if p.len == 3:
if op.s == "|" or op.id == ord(wOr):
compileConstraints(p[1], result, conf)
compileConstraints(p[2], result, conf)
result.add(ppOr)
elif op.s == "&" or op.id == ord(wAnd):
compileConstraints(p[1], result, conf)
compileConstraints(p[2], result, conf)
result.add(ppAnd)
else:
patternError(p, conf)
elif p.len == 2 and (op.s == "~" or op.id == ord(wNot)):
compileConstraints(p[1], result, conf)
result.add(ppNot)
else:
patternError(p, conf)
of nkAccQuoted, nkPar:
if p.len == 1:
compileConstraints(p[0], result, conf)
else:
patternError(p, conf)
of nkIdent:
let spec = p.ident.s.normalize
case spec
of "atom": result.add(ppAtom)
of "lit": result.add(ppLit)
of "sym": result.add(ppSym)
of "ident": result.add(ppIdent)
of "call": result.add(ppCall)
of "alias": result[0] = chr(aqShouldAlias.ord)
of "noalias": result[0] = chr(aqNoAlias.ord)
of "lvalue": result.add(ppLValue)
of "local": result.add(ppLocal)
of "sideeffect": result.add(ppSideEffect)
of "nosideeffect": result.add(ppNoSideEffect)
else:
# check all symkinds:
internalAssert conf, int(high(TSymKind)) < 255
for i in TSymKind:
if cmpIgnoreStyle(i.toHumanStr, spec) == 0:
result.add(ppSymKind)
result.add(chr(i.ord))
return
# check all nodekinds:
internalAssert conf, int(high(TNodeKind)) < 255
for i in TNodeKind:
if cmpIgnoreStyle($i, spec) == 0:
result.add(ppNodeKind)
result.add(chr(i.ord))
return
patternError(p, conf)
else:
patternError(p, conf)
proc semNodeKindConstraints*(n: PNode; conf: ConfigRef; start: Natural): PNode =
## does semantic checking for a node kind pattern and compiles it into an
## efficient internal format.
result = newNodeI(nkStrLit, n.info)
result.strVal = newStringOfCap(10)
result.strVal.add(chr(aqNone.ord))
if n.len >= 2:
for i in start..<n.len:
compileConstraints(n[i], result.strVal, conf)
if result.strVal.len > MaxStackSize-1:
internalError(conf, n.info, "parameter pattern too complex")
else:
patternError(n, conf)
result.strVal.add(ppEof)
type
TSideEffectAnalysis* = enum
seUnknown, seSideEffect, seNoSideEffect
proc checkForSideEffects*(n: PNode): TSideEffectAnalysis =
case n.kind
of nkCallKinds:
# only calls can produce side effects:
let op = n[0]
if op.kind == nkSym and isRoutine(op.sym):
let s = op.sym
if sfSideEffect in s.flags:
return seSideEffect
elif tfNoSideEffect in op.typ.flags:
result = seNoSideEffect
else:
# assume side effect:
result = seSideEffect
elif tfNoSideEffect in op.typ.flags:
# indirect call without side effects:
result = seNoSideEffect
else:
# indirect call: assume side effect:
return seSideEffect
# we need to check n[0] too: (FwithSideEffectButReturnsProcWithout)(args)
for i in 0..<n.len:
let ret = checkForSideEffects(n[i])
if ret == seSideEffect: return ret
elif ret == seUnknown and result == seNoSideEffect:
result = seUnknown
of nkNone..nkNilLit:
# an atom cannot produce a side effect:
result = seNoSideEffect
else:
# assume no side effect:
result = seNoSideEffect
for i in 0..<n.len:
let ret = checkForSideEffects(n[i])
if ret == seSideEffect: return ret
elif ret == seUnknown and result == seNoSideEffect:
result = seUnknown
type
TAssignableResult* = enum
arNone, # no l-value and no discriminant
arLValue, # is an l-value
arLocalLValue, # is an l-value, but local var; must not escape
# its stack frame!
arDiscriminant, # is a discriminant
arAddressableConst, # an addressable const
arLentValue, # lent value
arStrange # it is a strange beast like 'typedesc[var T]'
proc exprRoot*(n: PNode; allowCalls = true): PSym =
result = nil
var it = n
while true:
case it.kind
of nkSym: return it.sym
of nkHiddenDeref, nkDerefExpr:
if it[0].typ.skipTypes(abstractInst).kind in {tyPtr, tyRef}:
# 'ptr' is unsafe anyway and 'ref' is always on the heap,
# so allow these derefs:
break
else:
it = it[0]
of nkDotExpr, nkBracketExpr, nkHiddenAddr,
nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
it = it[0]
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
it = it[1]
of nkStmtList, nkStmtListExpr:
if it.len > 0 and it.typ != nil: it = it.lastSon
else: break
of nkCallKinds:
if allowCalls and it.typ != nil and it.typ.kind in {tyVar, tyLent} and it.len > 1:
# See RFC #7373, calls returning 'var T' are assumed to
# return a view into the first argument (if there is one):
it = it[1]
else:
break
else:
break
proc isAssignable*(owner: PSym, n: PNode): TAssignableResult =
## 'owner' can be nil!
result = arNone
case n.kind
of nkEmpty:
if n.typ != nil and n.typ.kind in {tyVar}:
result = arLValue
of nkSym:
const kinds = {skVar, skResult, skTemp, skParam, skLet, skForVar}
if n.sym.kind == skParam:
result = if n.sym.typ.kind in {tyVar, tySink}: arLValue else: arAddressableConst
elif n.sym.kind == skConst and dontInlineConstant(n, n.sym.astdef):
result = arAddressableConst
elif n.sym.kind in kinds:
if n.sym.kind in {skParam, skLet, skForVar}:
result = arAddressableConst
else:
if owner != nil and owner == n.sym.owner and
sfGlobal notin n.sym.flags:
result = arLocalLValue
else:
result = arLValue
elif n.sym.kind == skType:
let t = n.sym.typ.skipTypes({tyTypeDesc})
if t.kind in {tyVar}: result = arStrange
of nkDotExpr:
let t = skipTypes(n[0].typ, abstractInst-{tyTypeDesc})
if t.kind in {tyVar, tySink, tyPtr, tyRef}:
result = arLValue
elif t.kind == tyLent:
result = arAddressableConst
else:
result = isAssignable(owner, n[0])
if result != arNone and n[1].kind == nkSym and
sfDiscriminant in n[1].sym.flags:
result = arDiscriminant
of nkBracketExpr:
let t = skipTypes(n[0].typ, abstractInst-{tyTypeDesc})
if t.kind in {tyVar, tySink, tyPtr, tyRef}:
result = arLValue
elif t.kind == tyLent:
result = arAddressableConst
else:
result = isAssignable(owner, n[0])
of nkHiddenStdConv, nkHiddenSubConv, nkConv:
# Object and tuple conversions are still addressable, so we skip them
# XXX why is 'tyOpenArray' allowed here?
if skipTypes(n.typ, abstractPtrs-{tyTypeDesc}).kind in
{tyOpenArray, tyTuple, tyObject}:
result = isAssignable(owner, n[1])
elif compareTypes(n.typ, n[1].typ, dcEqIgnoreDistinct, {IgnoreRangeShallow}):
# types that are equal modulo distinction preserve l-value:
result = isAssignable(owner, n[1])
of nkHiddenDeref:
let n0 = n[0]
if n0.typ.kind == tyLent:
if n0.kind == nkSym and n0.sym.kind == skResult:
result = arLValue
else:
result = arLentValue
else:
result = arLValue
of nkDerefExpr, nkHiddenAddr:
result = arLValue
of nkObjUpConv, nkObjDownConv, nkCheckedFieldExpr:
result = isAssignable(owner, n[0])
of nkCallKinds:
let m = getMagic(n)
if m == mSlice:
# builtin slice keeps l-value-ness
# except for pointers because slice dereferences
if n[1].typ.kind == tyPtr:
result = arLValue
else:
result = isAssignable(owner, n[1])
elif m == mArrGet:
result = isAssignable(owner, n[1])
elif n.typ != nil:
case n.typ.kind
of tyVar: result = arLValue
of tyLent: result = arLentValue
else: discard
of nkStmtList, nkStmtListExpr:
if n.typ != nil:
result = isAssignable(owner, n.lastSon)
of nkVarTy:
# XXX: The fact that this is here is a bit of a hack.
# The goal is to allow the use of checks such as "foo(var T)"
# within concepts. Semantically, it's not correct to say that
# nkVarTy denotes an lvalue, but the example above is the only
# possible code which will get us here
result = arLValue
else:
discard
proc isLValue*(n: PNode): bool =
isAssignable(nil, n) in {arLValue, arLocalLValue, arStrange}
proc matchNodeKinds*(p, n: PNode): bool =
# matches the parameter constraint 'p' against the concrete AST 'n'.
# Efficiency matters here.
var stack {.noinit.}: array[0..MaxStackSize, bool]
# empty patterns are true:
stack[0] = true
var sp = 1
template push(x: bool) =
stack[sp] = x
inc sp
let code = p.strVal
var pc = 1
while true:
case TOpcode(code[pc])
of ppEof: break
of ppOr:
stack[sp-2] = stack[sp-1] or stack[sp-2]
dec sp
of ppAnd:
stack[sp-2] = stack[sp-1] and stack[sp-2]
dec sp
of ppNot: stack[sp-1] = not stack[sp-1]
of ppSym: push n.kind == nkSym
of ppAtom: push isAtom(n)
of ppLit: push n.kind in {nkCharLit..nkNilLit}
of ppIdent: push n.kind == nkIdent
of ppCall: push n.kind in nkCallKinds
of ppSymKind:
let kind = TSymKind(code[pc+1])
push n.kind == nkSym and n.sym.kind == kind
inc pc
of ppNodeKind:
let kind = TNodeKind(code[pc+1])
push n.kind == kind
inc pc
of ppLValue: push isAssignable(nil, n) in {arLValue, arLocalLValue}
of ppLocal: push isAssignable(nil, n) == arLocalLValue
of ppSideEffect: push checkForSideEffects(n) == seSideEffect
of ppNoSideEffect: push checkForSideEffects(n) != seSideEffect
inc pc
result = stack[sp-1]
|