1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#
#
# The Nim Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the pattern matching features for term rewriting
## macro support.
import
ast, types, semdata, sigmatch, idents, aliases, parampatterns, trees
when defined(nimPreviewSlimSystem):
import std/assertions
type
TPatternContext = object
owner: PSym
mapping: seq[PNode] # maps formal parameters to nodes
formals: int
c: PContext
subMatch: bool # subnode matches are special
mappingIsFull: bool
PPatternContext = var TPatternContext
proc getLazy(c: PPatternContext, sym: PSym): PNode =
if c.mappingIsFull:
result = c.mapping[sym.position]
else:
result = nil
proc putLazy(c: PPatternContext, sym: PSym, n: PNode) =
if not c.mappingIsFull:
newSeq(c.mapping, c.formals)
c.mappingIsFull = true
c.mapping[sym.position] = n
proc matches(c: PPatternContext, p, n: PNode): bool
proc canonKind(n: PNode): TNodeKind =
## nodekind canonicalization for pattern matching
result = n.kind
case result
of nkCallKinds: result = nkCall
of nkStrLit..nkTripleStrLit: result = nkStrLit
of nkFastAsgn, nkSinkAsgn: result = nkAsgn
else: discard
proc sameKinds(a, b: PNode): bool {.inline.} =
result = a.kind == b.kind or a.canonKind == b.canonKind
proc sameTrees*(a, b: PNode): bool =
if sameKinds(a, b):
case a.kind
of nkSym: result = a.sym == b.sym
of nkIdent: result = a.ident.id == b.ident.id
of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
of nkEmpty, nkNilLit: result = true
of nkType: result = sameTypeOrNil(a.typ, b.typ)
else:
if a.len == b.len:
for i in 0..<a.len:
if not sameTrees(a[i], b[i]): return
result = true
else:
result = false
else:
result = false
proc inSymChoice(sc, x: PNode): bool =
if sc.kind == nkClosedSymChoice:
result = false
for i in 0..<sc.len:
if sc[i].sym == x.sym: return true
elif sc.kind == nkOpenSymChoice:
# same name suffices for open sym choices!
result = sc[0].sym.name.id == x.sym.name.id
else:
result = false
proc checkTypes(c: PPatternContext, p: PSym, n: PNode): bool =
# check param constraints first here as this is quite optimized:
if p.constraint != nil:
result = matchNodeKinds(p.constraint, n)
if not result: return
if isNil(n.typ):
result = p.typ.kind in {tyVoid, tyTyped}
else:
result = sigmatch.argtypeMatches(c.c, p.typ, n.typ, fromHlo = true)
proc isPatternParam(c: PPatternContext, p: PNode): bool {.inline.} =
result = p.kind == nkSym and p.sym.kind == skParam and p.sym.owner == c.owner
proc matchChoice(c: PPatternContext, p, n: PNode): bool =
result = false
for i in 1..<p.len:
if matches(c, p[i], n): return true
proc bindOrCheck(c: PPatternContext, param: PSym, n: PNode): bool =
var pp = getLazy(c, param)
if pp != nil:
# check if we got the same pattern (already unified):
result = sameTrees(pp, n) #matches(c, pp, n)
elif n.kind == nkArgList or checkTypes(c, param, n):
putLazy(c, param, n)
result = true
else:
result = false
proc gather(c: PPatternContext, param: PSym, n: PNode) =
var pp = getLazy(c, param)
if pp != nil and pp.kind == nkArgList:
pp.add(n)
else:
pp = newNodeI(nkArgList, n.info, 1)
pp[0] = n
putLazy(c, param, pp)
proc matchNested(c: PPatternContext, p, n: PNode, rpn: bool): bool =
# match ``op * param`` or ``op *| param``
proc matchStarAux(c: PPatternContext, op, n, arglist: PNode,
rpn: bool): bool =
result = true
if n.kind in nkCallKinds and matches(c, op[1], n[0]):
for i in 1..<n.len:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
if rpn: arglist.add(n[0])
elif n.kind == nkHiddenStdConv and n[1].kind == nkBracket:
let n = n[1]
for i in 0..<n.len:
if not matchStarAux(c, op, n[i], arglist, rpn): return false
elif checkTypes(c, p[2].sym, n):
arglist.add(n)
else:
result = false
if n.kind notin nkCallKinds: return false
if matches(c, p[1], n[0]):
var arglist = newNodeI(nkArgList, n.info)
if matchStarAux(c, p, n, arglist, rpn):
result = bindOrCheck(c, p[2].sym, arglist)
else:
result = false
else:
result = false
proc matches(c: PPatternContext, p, n: PNode): bool =
let n = skipHidden(n)
if nfNoRewrite in n.flags:
result = false
elif isPatternParam(c, p):
result = bindOrCheck(c, p.sym, n)
elif n.kind == nkSym and p.kind == nkIdent:
result = p.ident.id == n.sym.name.id
elif n.kind == nkSym and inSymChoice(p, n):
result = true
elif n.kind == nkSym and n.sym.kind == skConst:
# try both:
if p.kind == nkSym: result = p.sym == n.sym
elif matches(c, p, n.sym.astdef): result = true
else: result = false
elif p.kind == nkPattern:
# pattern operators: | *
let opr = p[0].ident.s
case opr
of "|": result = matchChoice(c, p, n)
of "*": result = matchNested(c, p, n, rpn=false)
of "**": result = matchNested(c, p, n, rpn=true)
of "~": result = not matches(c, p[1], n)
else:
result = false
doAssert(false, "invalid pattern")
# template {add(a, `&` * b)}(a: string{noalias}, b: varargs[string]) =
# a.add(b)
elif p.kind == nkCurlyExpr:
if p[1].kind == nkPrefix:
if matches(c, p[0], n):
gather(c, p[1][1].sym, n)
result = true
else:
result = false
else:
assert isPatternParam(c, p[1])
if matches(c, p[0], n):
result = bindOrCheck(c, p[1].sym, n)
else:
result = false
elif sameKinds(p, n):
case p.kind
of nkSym: result = p.sym == n.sym
of nkIdent: result = p.ident.id == n.ident.id
of nkCharLit..nkInt64Lit: result = p.intVal == n.intVal
of nkFloatLit..nkFloat64Lit: result = p.floatVal == n.floatVal
of nkStrLit..nkTripleStrLit: result = p.strVal == n.strVal
of nkEmpty, nkNilLit, nkType:
result = true
else:
# special rule for p(X) ~ f(...); this also works for stuff like
# partial case statements, etc! - Not really ... :-/
result = false
let v = lastSon(p)
if isPatternParam(c, v) and v.sym.typ.kind == tyVarargs:
var arglist: PNode
if p.len <= n.len:
for i in 0..<p.len - 1:
if not matches(c, p[i], n[i]): return
if p.len == n.len and lastSon(n).kind == nkHiddenStdConv and
lastSon(n)[1].kind == nkBracket:
# unpack varargs:
let n = lastSon(n)[1]
arglist = newNodeI(nkArgList, n.info, n.len)
for i in 0..<n.len: arglist[i] = n[i]
else:
arglist = newNodeI(nkArgList, n.info, n.len - p.len + 1)
# f(1, 2, 3)
# p(X)
for i in 0..n.len - p.len:
arglist[i] = n[i + p.len - 1]
return bindOrCheck(c, v.sym, arglist)
elif p.len-1 == n.len:
for i in 0..<p.len - 1:
if not matches(c, p[i], n[i]): return
arglist = newNodeI(nkArgList, n.info)
return bindOrCheck(c, v.sym, arglist)
if p.len == n.len:
for i in 0..<p.len:
if not matches(c, p[i], n[i]): return
result = true
else:
result = false
proc matchStmtList(c: PPatternContext, p, n: PNode): PNode =
proc matchRange(c: PPatternContext, p, n: PNode, i: int): bool =
for j in 0..<p.len:
if not matches(c, p[j], n[i+j]):
# we need to undo any bindings:
c.mapping = @[]
c.mappingIsFull = false
return false
result = true
if p.kind == nkStmtList and n.kind == p.kind and p.len < n.len:
result = nil
let n = flattenStmts(n)
# no need to flatten 'p' here as that has already been done
for i in 0..n.len - p.len:
if matchRange(c, p, n, i):
c.subMatch = true
result = newNodeI(nkStmtList, n.info, 3)
result[0] = extractRange(nkStmtList, n, 0, i-1)
result[1] = extractRange(nkStmtList, n, i, i+p.len-1)
result[2] = extractRange(nkStmtList, n, i+p.len, n.len-1)
break
elif matches(c, p, n):
result = n
else:
result = nil
proc aliasAnalysisRequested(params: PNode): bool =
result = false
if params.len >= 2:
for i in 1..<params.len:
let param = params[i].sym
if whichAlias(param) != aqNone: return true
proc addToArgList(result, n: PNode) =
if n.typ != nil and n.typ.kind != tyTyped:
if n.kind != nkArgList: result.add(n)
else:
for i in 0..<n.len: result.add(n[i])
proc applyRule*(c: PContext, s: PSym, n: PNode): PNode =
## returns a tree to semcheck if the rule triggered; nil otherwise
var ctx = TPatternContext(owner: s, c: c, formals: s.typ.paramsLen)
var m = matchStmtList(ctx, s.ast[patternPos], n)
if isNil(m): return nil
# each parameter should have been bound; we simply setup a call and
# let semantic checking deal with the rest :-)
result = newNodeI(nkCall, n.info)
result.add(newSymNode(s, n.info))
let params = s.typ.n
let requiresAA = aliasAnalysisRequested(params)
var args: PNode =
if requiresAA:
newNodeI(nkArgList, n.info)
else:
nil
for i in 1..<params.len:
let param = params[i].sym
let x = getLazy(ctx, param)
# couldn't bind parameter:
if isNil(x): return nil
result.add(x)
if requiresAA: addToArgList(args, x)
# perform alias analysis here:
if requiresAA:
for i in 1..<params.len:
var rs = result[i]
let param = params[i].sym
case whichAlias(param)
of aqNone: discard
of aqShouldAlias:
# it suffices that it aliases for sure with *some* other param:
var ok = false
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) == arYes:
ok = true
break
# constraint not fulfilled:
if not ok: return nil
of aqNoAlias:
# it MUST not alias with any other param:
var ok = true
for arg in items(args):
if arg != rs and aliases.isPartOf(rs, arg) != arNo:
ok = false
break
# constraint not fulfilled:
if not ok: return nil
markUsed(c, n.info, s)
if ctx.subMatch:
assert m.len == 3
m[1] = result
result = m
|