1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Semantic checking for 'parallel'.
# - codegen needs to support mSlice (+)
# - lowerings must not perform unnecessary copies (+)
# - slices should become "nocopy" to openArray (+)
# - need to perform bound checks (+)
#
# - parallel needs to insert a barrier (+)
# - passed arguments need to be ensured to be "const"
# - what about 'f(a)'? --> f shouldn't have side effects anyway
# - passed arrays need to be ensured not to alias
# - passed slices need to be ensured to be disjoint (+)
# - output slices need special logic (+)
import
ast, astalgo, idents, lowerings, magicsys, guards, msgs,
renderer, types, modulegraphs, options, spawn, lineinfos
from trees import getMagic, getRoot
from std/strutils import `%`
discard """
one major problem:
spawn f(a[i])
inc i
spawn f(a[i])
is valid, but
spawn f(a[i])
spawn f(a[i])
inc i
is not! However,
spawn f(a[i])
if guard: inc i
spawn f(a[i])
is not valid either! --> We need a flow dependent analysis here.
However:
while foo:
spawn f(a[i])
inc i
spawn f(a[i])
Is not valid either! --> We should really restrict 'inc' to loop endings?
The heuristic that we implement here (that has no false positives) is: Usage
of 'i' in a slice *after* we determined the stride is invalid!
"""
type
TDirection = enum
ascending, descending
MonotonicVar = object
v, alias: PSym # to support the ordinary 'countup' iterator
# we need to detect aliases
lower, upper, stride: PNode
dir: TDirection
blacklisted: bool # blacklisted variables that are not monotonic
AnalysisCtx = object
locals: seq[MonotonicVar]
slices: seq[tuple[x,a,b: PNode, spawnId: int, inLoop: bool]]
guards: TModel # nested guards
args: seq[PSym] # args must be deeply immutable
spawns: int # we can check that at last 1 spawn is used in
# the 'parallel' section
currentSpawnId: int
inLoop: int
graph: ModuleGraph
proc initAnalysisCtx(g: ModuleGraph): AnalysisCtx =
result = AnalysisCtx(locals: @[],
slices: @[],
args: @[],
graph: g)
result.guards.s = @[]
result.guards.g = g
proc lookupSlot(c: AnalysisCtx; s: PSym): int =
for i in 0..<c.locals.len:
if c.locals[i].v == s or c.locals[i].alias == s: return i
return -1
proc getSlot(c: var AnalysisCtx; v: PSym): ptr MonotonicVar =
let s = lookupSlot(c, v)
if s >= 0: return addr(c.locals[s])
c.locals.setLen(c.locals.len+1)
c.locals[^1].v = v
return addr(c.locals[^1])
proc gatherArgs(c: var AnalysisCtx; n: PNode) =
for i in 0..<n.safeLen:
let root = getRoot n[i]
if root != nil:
block addRoot:
for r in items(c.args):
if r == root: break addRoot
c.args.add root
gatherArgs(c, n[i])
proc isSingleAssignable(n: PNode): bool =
n.kind == nkSym and (let s = n.sym;
s.kind in {skTemp, skForVar, skLet} and
{sfAddrTaken, sfGlobal} * s.flags == {})
proc isLocal(n: PNode): bool =
n.kind == nkSym and (let s = n.sym;
s.kind in {skResult, skTemp, skForVar, skVar, skLet} and
{sfAddrTaken, sfGlobal} * s.flags == {})
proc checkLocal(c: AnalysisCtx; n: PNode) =
if isLocal(n):
let s = c.lookupSlot(n.sym)
if s >= 0 and c.locals[s].stride != nil:
localError(c.graph.config, n.info, "invalid usage of counter after increment")
else:
for i in 0..<n.safeLen: checkLocal(c, n[i])
template `?`(x): untyped = x.renderTree
proc checkLe(c: AnalysisCtx; a, b: PNode) =
case proveLe(c.guards, a, b)
of impUnknown:
message(c.graph.config, a.info, warnStaticIndexCheck,
"cannot prove: " & ?a & " <= " & ?b)
of impYes: discard
of impNo:
message(c.graph.config, a.info, warnStaticIndexCheck,
"can prove: " & ?a & " > " & ?b)
proc checkBounds(c: AnalysisCtx; arr, idx: PNode) =
checkLe(c, lowBound(c.graph.config, arr), idx)
checkLe(c, idx, highBound(c.graph.config, arr, c.graph.operators))
proc addLowerBoundAsFacts(c: var AnalysisCtx) =
for v in c.locals:
if not v.blacklisted:
c.guards.addFactLe(v.lower, newSymNode(v.v))
proc addSlice(c: var AnalysisCtx; n: PNode; x, le, ri: PNode) =
checkLocal(c, n)
let le = le.canon(c.graph.operators)
let ri = ri.canon(c.graph.operators)
# perform static bounds checking here; and not later!
let oldState = c.guards.s.len
addLowerBoundAsFacts(c)
c.checkBounds(x, le)
c.checkBounds(x, ri)
c.guards.s.setLen(oldState)
c.slices.add((x, le, ri, c.currentSpawnId, c.inLoop > 0))
proc overlap(m: TModel; conf: ConfigRef; x,y,c,d: PNode) =
# X..Y and C..D overlap iff (X <= D and C <= Y)
case proveLe(m, c, y)
of impUnknown:
case proveLe(m, x, d)
of impNo: discard
of impUnknown, impYes:
message(conf, x.info, warnStaticIndexCheck,
"cannot prove: $# > $#; required for ($#)..($#) disjoint from ($#)..($#)" %
[?c, ?y, ?x, ?y, ?c, ?d])
of impYes:
case proveLe(m, x, d)
of impUnknown:
message(conf, x.info, warnStaticIndexCheck,
"cannot prove: $# > $#; required for ($#)..($#) disjoint from ($#)..($#)" %
[?x, ?d, ?x, ?y, ?c, ?d])
of impYes:
message(conf, x.info, warnStaticIndexCheck, "($#)..($#) not disjoint from ($#)..($#)" %
[?c, ?y, ?x, ?y, ?c, ?d])
of impNo: discard
of impNo: discard
proc stride(c: AnalysisCtx; n: PNode): BiggestInt =
if isLocal(n):
let s = c.lookupSlot(n.sym)
if s >= 0 and c.locals[s].stride != nil:
result = c.locals[s].stride.intVal
else:
result = 0
else:
result = 0
for i in 0..<n.safeLen: result += stride(c, n[i])
proc subStride(c: AnalysisCtx; n: PNode): PNode =
# substitute with stride:
if isLocal(n):
let s = c.lookupSlot(n.sym)
if s >= 0 and c.locals[s].stride != nil:
result = buildAdd(n, c.locals[s].stride.intVal, c.graph.operators)
else:
result = n
elif n.safeLen > 0:
result = shallowCopy(n)
for i in 0..<n.len: result[i] = subStride(c, n[i])
else:
result = n
proc checkSlicesAreDisjoint(c: var AnalysisCtx) =
# this is the only thing that we need to perform after we have traversed
# the whole tree so that the strides are available.
# First we need to add all the computed lower bounds:
addLowerBoundAsFacts(c)
# Every slice used in a loop needs to be disjoint with itself:
for x,a,b,id,inLoop in items(c.slices):
if inLoop: overlap(c.guards, c.graph.config, a,b, c.subStride(a), c.subStride(b))
# Another tricky example is:
# while true:
# spawn f(a[i])
# spawn f(a[i+1])
# inc i # inc i, 2 would be correct here
#
# Or even worse:
# while true:
# spawn f(a[i+1..i+3])
# spawn f(a[i+4..i+5])
# inc i, 4
# Prove that i*k*stride + 3 != i*k'*stride + 5
# For the correct example this amounts to
# i*k*2 != i*k'*2 + 1
# which is true.
# For now, we don't try to prove things like that at all, even though it'd
# be feasible for many useful examples. Instead we attach the slice to
# a spawn and if the attached spawns differ, we bail out:
for i in 0..high(c.slices):
for j in i+1..high(c.slices):
let x = c.slices[i]
let y = c.slices[j]
if x.spawnId != y.spawnId and guards.sameTree(x.x, y.x):
if not x.inLoop or not y.inLoop:
# XXX strictly speaking, 'or' is not correct here and it needs to
# be 'and'. However this prevents too many obviously correct programs
# like f(a[0..x]); for i in x+1..a.high: f(a[i])
overlap(c.guards, c.graph.config, x.a, x.b, y.a, y.b)
elif (let k = simpleSlice(x.a, x.b); let m = simpleSlice(y.a, y.b);
k >= 0 and m >= 0):
# ah I cannot resist the temptation and add another sweet heuristic:
# if both slices have the form (i+k)..(i+k) and (i+m)..(i+m) we
# check they are disjoint and k < stride and m < stride:
overlap(c.guards, c.graph.config, x.a, x.b, y.a, y.b)
let stride = min(c.stride(x.a), c.stride(y.a))
if k < stride and m < stride:
discard
else:
localError(c.graph.config, x.x.info, "cannot prove ($#)..($#) disjoint from ($#)..($#)" %
[?x.a, ?x.b, ?y.a, ?y.b])
else:
localError(c.graph.config, x.x.info, "cannot prove ($#)..($#) disjoint from ($#)..($#)" %
[?x.a, ?x.b, ?y.a, ?y.b])
proc analyse(c: var AnalysisCtx; n: PNode)
proc analyseSons(c: var AnalysisCtx; n: PNode) =
for i in 0..<n.safeLen: analyse(c, n[i])
proc min(a, b: PNode): PNode =
if a.isNil: result = b
elif a.intVal < b.intVal: result = a
else: result = b
template pushSpawnId(c, body) {.dirty.} =
inc c.spawns
let oldSpawnId = c.currentSpawnId
c.currentSpawnId = c.spawns
body
c.currentSpawnId = oldSpawnId
proc analyseCall(c: var AnalysisCtx; n: PNode; op: PSym) =
if op.magic == mSpawn:
pushSpawnId(c):
gatherArgs(c, n[1])
analyseSons(c, n)
elif op.magic == mInc or (op.name.s == "+=" and op.fromSystem):
if n[1].isLocal:
let incr = n[2].skipConv
if incr.kind in {nkCharLit..nkUInt32Lit} and incr.intVal > 0:
let slot = c.getSlot(n[1].sym)
slot.stride = min(slot.stride, incr)
analyseSons(c, n)
elif op.name.s == "[]" and op.fromSystem:
let slice = n[2].skipStmtList
c.addSlice(n, n[1], slice[1], slice[2])
analyseSons(c, n)
elif op.name.s == "[]=" and op.fromSystem:
let slice = n[2].skipStmtList
c.addSlice(n, n[1], slice[1], slice[2])
analyseSons(c, n)
else:
analyseSons(c, n)
proc analyseCase(c: var AnalysisCtx; n: PNode) =
analyse(c, n[0])
let oldFacts = c.guards.s.len
for i in 1..<n.len:
let branch = n[i]
setLen(c.guards.s, oldFacts)
addCaseBranchFacts(c.guards, n, i)
for i in 0..<branch.len:
analyse(c, branch[i])
setLen(c.guards.s, oldFacts)
proc analyseIf(c: var AnalysisCtx; n: PNode) =
analyse(c, n[0][0])
let oldFacts = c.guards.s.len
addFact(c.guards, canon(n[0][0], c.graph.operators))
analyse(c, n[0][1])
for i in 1..<n.len:
let branch = n[i]
setLen(c.guards.s, oldFacts)
for j in 0..i-1:
addFactNeg(c.guards, canon(n[j][0], c.graph.operators))
if branch.len > 1:
addFact(c.guards, canon(branch[0], c.graph.operators))
for i in 0..<branch.len:
analyse(c, branch[i])
setLen(c.guards.s, oldFacts)
proc analyse(c: var AnalysisCtx; n: PNode) =
case n.kind
of nkAsgn, nkFastAsgn, nkSinkAsgn:
let y = n[1].skipConv
if n[0].isSingleAssignable and y.isLocal:
let slot = c.getSlot(y.sym)
slot.alias = n[0].sym
elif n[0].isLocal:
# since we already ensure sfAddrTaken is not in s.flags, we only need to
# prevent direct assignments to the monotonic variable:
let slot = c.getSlot(n[0].sym)
slot.blacklisted = true
invalidateFacts(c.guards, n[0])
let value = n[1]
if getMagic(value) == mSpawn:
pushSpawnId(c):
gatherArgs(c, value[1])
analyseSons(c, value[1])
analyse(c, n[0])
else:
analyseSons(c, n)
addAsgnFact(c.guards, n[0], y)
of nkCallKinds:
# direct call:
if n[0].kind == nkSym: analyseCall(c, n, n[0].sym)
else: analyseSons(c, n)
of nkBracketExpr:
if n[0].typ != nil and skipTypes(n[0].typ, abstractVar).kind != tyTuple:
c.addSlice(n, n[0], n[1], n[1])
analyseSons(c, n)
of nkReturnStmt, nkRaiseStmt, nkTryStmt, nkHiddenTryStmt:
localError(c.graph.config, n.info, "invalid control flow for 'parallel'")
# 'break' that leaves the 'parallel' section is not valid either
# or maybe we should generate a 'try' XXX
of nkVarSection, nkLetSection:
for it in n:
let value = it.lastSon
let isSpawned = getMagic(value) == mSpawn
if isSpawned:
pushSpawnId(c):
gatherArgs(c, value[1])
analyseSons(c, value[1])
if value.kind != nkEmpty:
for j in 0..<it.len-2:
if it[j].isLocal:
let slot = c.getSlot(it[j].sym)
if slot.lower.isNil: slot.lower = value
else: internalError(c.graph.config, it.info, "slot already has a lower bound")
if not isSpawned: analyse(c, value)
of nkCaseStmt: analyseCase(c, n)
of nkWhen, nkIfStmt, nkIfExpr: analyseIf(c, n)
of nkWhileStmt:
analyse(c, n[0])
# 'while true' loop?
inc c.inLoop
if isTrue(n[0]):
analyseSons(c, n[1])
else:
# loop may never execute:
let oldState = c.locals.len
let oldFacts = c.guards.s.len
addFact(c.guards, canon(n[0], c.graph.operators))
analyse(c, n[1])
setLen(c.locals, oldState)
setLen(c.guards.s, oldFacts)
# we know after the loop the negation holds:
if not hasSubnodeWith(n[1], nkBreakStmt):
addFactNeg(c.guards, canon(n[0], c.graph.operators))
dec c.inLoop
of nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef, nkIteratorDef,
nkMacroDef, nkTemplateDef, nkConstSection, nkPragma, nkFuncDef,
nkMixinStmt, nkBindStmt, nkExportStmt:
discard
else:
analyseSons(c, n)
proc transformSlices(g: ModuleGraph; idgen: IdGenerator; n: PNode): PNode =
if n.kind in nkCallKinds and n[0].kind == nkSym:
let op = n[0].sym
if op.name.s == "[]" and op.fromSystem:
result = copyNode(n)
var typ = newType(tyOpenArray, idgen, result.typ.owner)
typ.add result.typ.elementType
result.typ = typ
let opSlice = newSymNode(createMagic(g, idgen, "slice", mSlice))
opSlice.typ = getSysType(g, n.info, tyInt)
result.add opSlice
result.add n[1]
let slice = n[2].skipStmtList
result.add slice[1]
result.add slice[2]
return result
if n.safeLen > 0:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = transformSlices(g, idgen, n[i])
else:
result = n
proc transformSpawn(g: ModuleGraph; idgen: IdGenerator; owner: PSym; n, barrier: PNode): PNode
proc transformSpawnSons(g: ModuleGraph; idgen: IdGenerator; owner: PSym; n, barrier: PNode): PNode =
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = transformSpawn(g, idgen, owner, n[i], barrier)
proc transformSpawn(g: ModuleGraph; idgen: IdGenerator; owner: PSym; n, barrier: PNode): PNode =
case n.kind
of nkVarSection, nkLetSection:
result = nil
for it in n:
let b = it.lastSon
if getMagic(b) == mSpawn:
if it.len != 3: localError(g.config, it.info, "invalid context for 'spawn'")
let m = transformSlices(g, idgen, b)
if result.isNil:
result = newNodeI(nkStmtList, n.info)
result.add n
let t = b[1][0].typ.returnType
if spawnResult(t, true) == srByVar:
result.add wrapProcForSpawn(g, idgen, owner, m, b.typ, barrier, it[0])
it[^1] = newNodeI(nkEmpty, it.info)
else:
it[^1] = wrapProcForSpawn(g, idgen, owner, m, b.typ, barrier, nil)
if result.isNil: result = n
of nkAsgn, nkFastAsgn, nkSinkAsgn:
let b = n[1]
if getMagic(b) == mSpawn and (let t = b[1][0].typ.returnType;
spawnResult(t, true) == srByVar):
let m = transformSlices(g, idgen, b)
return wrapProcForSpawn(g, idgen, owner, m, b.typ, barrier, n[0])
result = transformSpawnSons(g, idgen, owner, n, barrier)
of nkCallKinds:
if getMagic(n) == mSpawn:
result = transformSlices(g, idgen, n)
return wrapProcForSpawn(g, idgen, owner, result, n.typ, barrier, nil)
result = transformSpawnSons(g, idgen, owner, n, barrier)
elif n.safeLen > 0:
result = transformSpawnSons(g, idgen, owner, n, barrier)
else:
result = n
proc checkArgs(a: var AnalysisCtx; n: PNode) =
discard "to implement"
proc generateAliasChecks(a: AnalysisCtx; result: PNode) =
discard "to implement"
proc liftParallel*(g: ModuleGraph; idgen: IdGenerator; owner: PSym; n: PNode): PNode =
# this needs to be called after the 'for' loop elimination
# first pass:
# - detect monotonic local integer variables
# - detect used slices
# - detect used arguments
#echo "PAR ", renderTree(n)
var a = initAnalysisCtx(g)
let body = n.lastSon
analyse(a, body)
if a.spawns == 0:
localError(g.config, n.info, "'parallel' section without 'spawn'")
checkSlicesAreDisjoint(a)
checkArgs(a, body)
var varSection = newNodeI(nkVarSection, n.info)
var temp = newSym(skTemp, getIdent(g.cache, "barrier"), idgen, owner, n.info)
temp.typ = magicsys.getCompilerProc(g, "Barrier").typ
incl(temp.flags, sfFromGeneric)
let tempNode = newSymNode(temp)
varSection.addVar tempNode
let barrier = genAddrOf(tempNode, idgen)
result = newNodeI(nkStmtList, n.info)
generateAliasChecks(a, result)
result.add varSection
result.add callCodegenProc(g, "openBarrier", barrier.info, barrier)
result.add transformSpawn(g, idgen, owner, body, barrier)
result.add callCodegenProc(g, "closeBarrier", barrier.info, barrier)
|