1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# This module does the instantiation of generic types.
import std / tables
import ast, astalgo, msgs, types, magicsys, semdata, renderer, options,
lineinfos, modulegraphs
when defined(nimPreviewSlimSystem):
import std/assertions
const tfInstClearedFlags = {tfHasMeta, tfUnresolved}
proc checkPartialConstructedType(conf: ConfigRef; info: TLineInfo, t: PType) =
if t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
localError(conf, info, "type 'var var' is not allowed")
proc checkConstructedType*(conf: ConfigRef; info: TLineInfo, typ: PType) =
var t = typ.skipTypes({tyDistinct})
if t.kind in tyTypeClasses: discard
elif t.kind in {tyVar, tyLent} and t.elementType.kind in {tyVar, tyLent}:
localError(conf, info, "type 'var var' is not allowed")
elif computeSize(conf, t) == szIllegalRecursion or isTupleRecursive(t):
localError(conf, info, "illegal recursion in type '" & typeToString(t) & "'")
proc searchInstTypes*(g: ModuleGraph; key: PType): PType =
result = nil
let genericTyp = key[0]
if not (genericTyp.kind == tyGenericBody and
genericTyp.sym != nil): return
for inst in typeInstCacheItems(g, genericTyp.sym):
if inst.id == key.id: return inst
if inst.kidsLen < key.kidsLen:
# XXX: This happens for prematurely cached
# types such as Channel[empty]. Why?
# See the notes for PActor in handleGenericInvocation
# if this is return the same type gets cached more than it needs to
continue
if not sameFlags(inst, key):
continue
block matchType:
for j in FirstGenericParamAt..<key.kidsLen:
# XXX sameType is not really correct for nested generics?
if not compareTypes(inst[j], key[j],
flags = {ExactGenericParams, PickyCAliases}):
break matchType
return inst
proc cacheTypeInst(c: PContext; inst: PType) =
let gt = inst[0]
let t = if gt.kind == tyGenericBody: gt.typeBodyImpl else: gt
if t.kind in {tyStatic, tyError, tyGenericParam} + tyTypeClasses:
return
addToGenericCache(c, gt.sym, inst)
type
LayeredIdTable* {.acyclic.} = ref object
topLayer*: TypeMapping
nextLayer*: LayeredIdTable
TReplTypeVars* = object
c*: PContext
typeMap*: LayeredIdTable # map PType to PType
symMap*: SymMapping # map PSym to PSym
localCache*: TypeMapping # local cache for remembering already replaced
# types during instantiation of meta types
# (they are not stored in the global cache)
info*: TLineInfo
allowMetaTypes*: bool # allow types such as seq[Number]
# i.e. the result contains unresolved generics
skipTypedesc*: bool # whether we should skip typeDescs
isReturnType*: bool
owner*: PSym # where this instantiation comes from
recursionLimit: int
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym
proc replaceTypeVarsN*(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode
proc initLayeredTypeMap*(pt: sink TypeMapping): LayeredIdTable =
result = LayeredIdTable()
result.topLayer = pt
proc newTypeMapLayer*(cl: var TReplTypeVars): LayeredIdTable =
result = LayeredIdTable(nextLayer: cl.typeMap, topLayer: initTable[ItemId, PType]())
proc lookup(typeMap: LayeredIdTable, key: PType): PType =
result = nil
var tm = typeMap
while tm != nil:
result = getOrDefault(tm.topLayer, key.itemId)
if result != nil: return
tm = tm.nextLayer
template put(typeMap: LayeredIdTable, key, value: PType) =
typeMap.topLayer[key.itemId] = value
template checkMetaInvariants(cl: TReplTypeVars, t: PType) = # noop code
when false:
if t != nil and tfHasMeta in t.flags and
cl.allowMetaTypes == false:
echo "UNEXPECTED META ", t.id, " ", instantiationInfo(-1)
debug t
writeStackTrace()
proc replaceTypeVarsT*(cl: var TReplTypeVars, t: PType): PType =
result = replaceTypeVarsTAux(cl, t)
checkMetaInvariants(cl, result)
proc prepareNode*(cl: var TReplTypeVars, n: PNode): PNode =
## instantiates a given generic expression, not a type node
if n.kind == nkSym and n.sym.kind == skType and
n.sym.typ != nil and n.sym.typ.kind == tyGenericBody:
# generic body types are allowed as user expressions, see #24090
return n
let t = replaceTypeVarsT(cl, n.typ)
if t != nil and t.kind == tyStatic and t.n != nil:
return if tfUnresolved in t.flags: prepareNode(cl, t.n)
else: t.n
result = copyNode(n)
result.typ = t
if result.kind == nkSym:
result.sym =
if n.typ != nil and n.typ == n.sym.typ:
replaceTypeVarsS(cl, n.sym, result.typ)
else:
replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
# we need to avoid trying to instantiate nodes that can have uninstantiated
# types, like generic proc symbols or raw generic type symbols
case n.kind
of nkSymChoices:
# don't try to instantiate symchoice symbols, they can be
# generic procs which the compiler will think are uninstantiated
# because their type will contain uninstantiated params
for i in 0..<n.len:
result.add(n[i])
of nkCallKinds:
# don't try to instantiate call names since they may be generic proc syms
# also bracket expressions can turn into calls with symchoice [] and
# we need to not instantiate the Generic in Generic[int]
# exception exists for the call name being a dot expression since
# dot expressions need their LHS instantiated
assert n.len != 0
# avoid instantiating generic proc symbols, refine condition if needed:
let ignoreFirst = n[0].kind notin {nkDotExpr, nkBracketExpr} + nkCallKinds
let name = n[0].getPIdent
let ignoreSecond = name != nil and name.s == "[]" and n.len > 1 and
# generic type instantiation:
((n[1].typ != nil and n[1].typ.kind == tyTypeDesc) or
# generic proc instantiation:
(n[1].kind == nkSym and n[1].sym.isGenericRoutineStrict))
if ignoreFirst:
result.add(n[0])
else:
result.add(prepareNode(cl, n[0]))
if n.len > 1:
if ignoreSecond:
result.add(n[1])
else:
result.add(prepareNode(cl, n[1]))
for i in 2..<n.len:
result.add(prepareNode(cl, n[i]))
of nkBracketExpr:
# don't instantiate Generic body type in expression like Generic[T]
# exception exists for the call name being a dot expression since
# dot expressions need their LHS instantiated
assert n.len != 0
let ignoreFirst = n[0].kind != nkDotExpr and
# generic type instantiation:
((n[0].typ != nil and n[0].typ.kind == tyTypeDesc) or
# generic proc instantiation:
(n[0].kind == nkSym and n[0].sym.isGenericRoutineStrict))
if ignoreFirst:
result.add(n[0])
else:
result.add(prepareNode(cl, n[0]))
for i in 1..<n.len:
result.add(prepareNode(cl, n[i]))
of nkDotExpr:
# don't try to instantiate RHS of dot expression, it can outright be
# undeclared, but definitely instantiate LHS
assert n.len >= 2
result.add(prepareNode(cl, n[0]))
result.add(n[1])
for i in 2..<n.len:
result.add(prepareNode(cl, n[i]))
else:
for i in 0..<n.safeLen:
result.add(prepareNode(cl, n[i]))
proc isTypeParam(n: PNode): bool =
# XXX: generic params should use skGenericParam instead of skType
return n.kind == nkSym and
(n.sym.kind == skGenericParam or
(n.sym.kind == skType and sfFromGeneric in n.sym.flags))
when false: # old workaround
proc reResolveCallsWithTypedescParams(cl: var TReplTypeVars, n: PNode): PNode =
# This is needed for tuninstantiatedgenericcalls
# It's possible that a generic param will be used in a proc call to a
# typedesc accepting proc. After generic param substitution, such procs
# should be optionally instantiated with the correct type. In order to
# perform this instantiation, we need to re-run the generateInstance path
# in the compiler, but it's quite complicated to do so at the moment so we
# resort to a mild hack; the head symbol of the call is temporary reset and
# overload resolution is executed again (which may trigger generateInstance).
if n.kind in nkCallKinds and sfFromGeneric in n[0].sym.flags:
var needsFixing = false
for i in 1..<n.safeLen:
if isTypeParam(n[i]): needsFixing = true
if needsFixing:
n[0] = newSymNode(n[0].sym.owner)
return cl.c.semOverloadedCall(cl.c, n, n, {skProc, skFunc}, {})
for i in 0..<n.safeLen:
n[i] = reResolveCallsWithTypedescParams(cl, n[i])
return n
proc replaceObjBranches(cl: TReplTypeVars, n: PNode): PNode =
result = n
case n.kind
of nkNone..nkNilLit:
discard
of nkRecWhen:
var branch: PNode = nil # the branch to take
for i in 0..<n.len:
var it = n[i]
if it == nil: illFormedAst(n, cl.c.config)
case it.kind
of nkElifBranch:
checkSonsLen(it, 2, cl.c.config)
var cond = it[0]
var e = cl.c.semConstExpr(cl.c, cond)
if e.kind != nkIntLit:
internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
if e.intVal != 0 and branch == nil: branch = it[1]
of nkElse:
checkSonsLen(it, 1, cl.c.config)
if branch == nil: branch = it[0]
else: illFormedAst(n, cl.c.config)
if branch != nil:
result = replaceObjBranches(cl, branch)
else:
result = newNodeI(nkRecList, n.info)
else:
for i in 0..<n.len:
n[i] = replaceObjBranches(cl, n[i])
proc hasValuelessStatics(n: PNode): bool =
# We should only attempt to call an expression that has no tyStatics
# As those are unresolved generic parameters, which means in the following
# The compiler attempts to do `T == 300` which errors since the typeclass `MyThing` lacks a parameter
#[
type MyThing[T: static int] = object
when T == 300:
a
proc doThing(_: MyThing)
]#
if n.safeLen == 0 and n.kind != nkEmpty: # Some empty nodes can get in here
n.typ == nil or n.typ.kind == tyStatic
else:
for x in n:
if hasValuelessStatics(x):
return true
false
proc replaceTypeVarsN(cl: var TReplTypeVars, n: PNode; start=0; expectedType: PType = nil): PNode =
if n == nil: return
result = copyNode(n)
if n.typ != nil:
if n.typ.kind == tyFromExpr:
# type of node should not be evaluated as a static value
n.typ.flags.incl tfNonConstExpr
result.typ = replaceTypeVarsT(cl, n.typ)
checkMetaInvariants(cl, result.typ)
case n.kind
of nkNone..pred(nkSym), succ(nkSym)..nkNilLit:
discard
of nkOpenSymChoice, nkClosedSymChoice: result = n
of nkSym:
result.sym =
if n.typ != nil and n.typ == n.sym.typ:
replaceTypeVarsS(cl, n.sym, result.typ)
else:
replaceTypeVarsS(cl, n.sym, replaceTypeVarsT(cl, n.sym.typ))
# sym type can be nil if was gensym created by macro, see #24048
if result.sym.typ != nil and result.sym.typ.kind == tyVoid:
# don't add the 'void' field
result = newNodeI(nkRecList, n.info)
of nkRecWhen:
var branch: PNode = nil # the branch to take
for i in 0..<n.len:
var it = n[i]
if it == nil: illFormedAst(n, cl.c.config)
case it.kind
of nkElifBranch:
checkSonsLen(it, 2, cl.c.config)
var cond = prepareNode(cl, it[0])
if not cond.hasValuelessStatics:
var e = cl.c.semConstExpr(cl.c, cond)
if e.kind != nkIntLit:
internalError(cl.c.config, e.info, "ReplaceTypeVarsN: when condition not a bool")
if e.intVal != 0 and branch == nil: branch = it[1]
of nkElse:
checkSonsLen(it, 1, cl.c.config)
if branch == nil: branch = it[0]
else: illFormedAst(n, cl.c.config)
if branch != nil:
result = replaceTypeVarsN(cl, branch)
else:
result = newNodeI(nkRecList, n.info)
of nkStaticExpr:
var n = prepareNode(cl, n)
when false:
n = reResolveCallsWithTypedescParams(cl, n)
result = if cl.allowMetaTypes: n
else: cl.c.semExpr(cl.c, n, {}, expectedType)
if not cl.allowMetaTypes and expectedType != nil:
assert result.kind notin nkCallKinds
else:
if n.len > 0:
newSons(result, n.len)
if start > 0:
result[0] = n[0]
for i in start..<n.len:
result[i] = replaceTypeVarsN(cl, n[i])
proc replaceTypeVarsS(cl: var TReplTypeVars, s: PSym, t: PType): PSym =
if s == nil: return nil
# symbol is not our business:
if cl.owner != nil and s.owner != cl.owner:
return s
# XXX: Bound symbols in default parameter expressions may reach here.
# We cannot process them, because `sym.n` may point to a proc body with
# cyclic references that will lead to an infinite recursion.
# Perhaps we should not use a black-list here, but a whitelist instead
# (e.g. skGenericParam and skType).
# Note: `s.magic` may be `mType` in an example such as:
# proc foo[T](a: T, b = myDefault(type(a)))
if s.kind in routineKinds+{skLet, skConst, skVar} or s.magic != mNone:
return s
#result = PSym(idTableGet(cl.symMap, s))
#if result == nil:
#[
We cannot naively check for symbol recursions, because otherwise
object types A, B whould share their fields!
import tables
type
Table[S, T] = object
x: S
y: T
G[T] = object
inodes: Table[int, T] # A
rnodes: Table[T, int] # B
var g: G[string]
]#
result = copySym(s, cl.c.idgen)
incl(result.flags, sfFromGeneric)
#idTablePut(cl.symMap, s, result)
result.owner = s.owner
result.typ = t
if result.kind != skType:
result.ast = replaceTypeVarsN(cl, s.ast)
proc lookupTypeVar(cl: var TReplTypeVars, t: PType): PType =
if tfRetType in t.flags and t.kind == tyAnything:
# don't bind `auto` return type to a previous binding of `auto`
return nil
result = cl.typeMap.lookup(t)
if result == nil:
if cl.allowMetaTypes or tfRetType in t.flags: return
localError(cl.c.config, t.sym.info, "cannot instantiate: '" & typeToString(t) & "'")
result = errorType(cl.c)
# In order to prevent endless recursions, we must remember
# this bad lookup and replace it with errorType everywhere.
# These code paths are only active in "nim check"
cl.typeMap.put(t, result)
elif result.kind == tyGenericParam and not cl.allowMetaTypes:
internalError(cl.c.config, cl.info, "substitution with generic parameter")
proc instCopyType*(cl: var TReplTypeVars, t: PType): PType =
# XXX: relying on allowMetaTypes is a kludge
if cl.allowMetaTypes:
result = t.exactReplica
else:
result = copyType(t, cl.c.idgen, t.owner)
copyTypeProps(cl.c.graph, cl.c.idgen.module, result, t)
#cl.typeMap.topLayer.idTablePut(result, t)
if cl.allowMetaTypes: return
result.flags.incl tfFromGeneric
if not (t.kind in tyMetaTypes or
(t.kind == tyStatic and t.n == nil)):
result.flags.excl tfInstClearedFlags
else:
result.flags.excl tfHasAsgn
when false:
if newDestructors:
result.assignment = nil
result.destructor = nil
result.sink = nil
proc handleGenericInvocation(cl: var TReplTypeVars, t: PType): PType =
# tyGenericInvocation[A, tyGenericInvocation[A, B]]
# is difficult to handle:
var body = t.genericHead
if body.kind != tyGenericBody:
internalError(cl.c.config, cl.info, "no generic body")
var header = t
# search for some instantiation here:
if cl.allowMetaTypes:
result = getOrDefault(cl.localCache, t.itemId)
else:
result = searchInstTypes(cl.c.graph, t)
if result != nil and sameFlags(result, t):
when defined(reportCacheHits):
echo "Generic instantiation cached ", typeToString(result), " for ", typeToString(t)
return
for i in FirstGenericParamAt..<t.kidsLen:
var x = t[i]
if x.kind in {tyGenericParam}:
x = lookupTypeVar(cl, x)
if x != nil:
if header == t: header = instCopyType(cl, t)
header[i] = x
propagateToOwner(header, x)
else:
propagateToOwner(header, x)
if header != t:
# search again after first pass:
result = searchInstTypes(cl.c.graph, header)
if result != nil and sameFlags(result, t):
when defined(reportCacheHits):
echo "Generic instantiation cached ", typeToString(result), " for ",
typeToString(t), " header ", typeToString(header)
return
else:
header = instCopyType(cl, t)
result = newType(tyGenericInst, cl.c.idgen, t.genericHead.owner, son = header.genericHead)
result.flags = header.flags
# be careful not to propagate unnecessary flags here (don't use rawAddSon)
# ugh need another pass for deeply recursive generic types (e.g. PActor)
# we need to add the candidate here, before it's fully instantiated for
# recursive instantions:
if not cl.allowMetaTypes:
cacheTypeInst(cl.c, result)
else:
cl.localCache[t.itemId] = result
let oldSkipTypedesc = cl.skipTypedesc
cl.skipTypedesc = true
cl.typeMap = newTypeMapLayer(cl)
for i in FirstGenericParamAt..<t.kidsLen:
var x = replaceTypeVarsT(cl):
if header[i].kind == tyGenericInst:
t[i]
else:
header[i]
assert x.kind != tyGenericInvocation
header[i] = x
propagateToOwner(header, x)
cl.typeMap.put(body[i-1], x)
for i in FirstGenericParamAt..<t.kidsLen:
# if one of the params is not concrete, we cannot do anything
# but we already raised an error!
rawAddSon(result, header[i], propagateHasAsgn = false)
if body.kind == tyError:
return
let bbody = last body
var newbody = replaceTypeVarsT(cl, bbody)
cl.skipTypedesc = oldSkipTypedesc
newbody.flags = newbody.flags + (t.flags + body.flags - tfInstClearedFlags)
result.flags = result.flags + newbody.flags - tfInstClearedFlags
cl.typeMap = cl.typeMap.nextLayer
# This is actually wrong: tgeneric_closure fails with this line:
#newbody.callConv = body.callConv
# This type may be a generic alias and we want to resolve it here.
# One step is enough, because the recursive nature of
# handleGenericInvocation will handle the alias-to-alias-to-alias case
if newbody.isGenericAlias: newbody = newbody.skipGenericAlias
rawAddSon(result, newbody)
checkPartialConstructedType(cl.c.config, cl.info, newbody)
if not cl.allowMetaTypes:
let dc = cl.c.graph.getAttachedOp(newbody, attachedDeepCopy)
if dc != nil and sfFromGeneric notin dc.flags:
# 'deepCopy' needs to be instantiated for
# generics *when the type is constructed*:
cl.c.graph.setAttachedOp(cl.c.module.position, newbody, attachedDeepCopy,
cl.c.instTypeBoundOp(cl.c, dc, result, cl.info, attachedDeepCopy, 1))
if newbody.typeInst == nil:
# doAssert newbody.typeInst == nil
newbody.typeInst = result
if tfRefsAnonObj in newbody.flags and newbody.kind != tyGenericInst:
# can come here for tyGenericInst too, see tests/metatype/ttypeor.nim
# need to look into this issue later
assert newbody.kind in {tyRef, tyPtr}
if newbody.last.typeInst != nil:
#internalError(cl.c.config, cl.info, "ref already has a 'typeInst' field")
discard
else:
newbody.last.typeInst = result
# DESTROY: adding object|opt for opt[topttree.Tree]
# sigmatch: Formal opt[=destroy.T] real opt[topttree.Tree]
# adding myseq for myseq[system.int]
# sigmatch: Formal myseq[=destroy.T] real myseq[system.int]
#echo "DESTROY: adding ", typeToString(newbody), " for ", typeToString(result, preferDesc)
let mm = skipTypes(bbody, abstractPtrs)
if tfFromGeneric notin mm.flags:
# bug #5479, prevent endless recursions here:
incl mm.flags, tfFromGeneric
for col, meth in methodsForGeneric(cl.c.graph, mm):
# we instantiate the known methods belonging to that type, this causes
# them to be registered and that's enough, so we 'discard' the result.
discard cl.c.instTypeBoundOp(cl.c, meth, result, cl.info,
attachedAsgn, col)
excl mm.flags, tfFromGeneric
proc eraseVoidParams*(t: PType) =
# transform '(): void' into '()' because old parts of the compiler really
# don't deal with '(): void':
if t.returnType != nil and t.returnType.kind == tyVoid:
t.setReturnType nil
for i in FirstParamAt..<t.signatureLen:
# don't touch any memory unless necessary
if t[i].kind == tyVoid:
var pos = i
for j in i+1..<t.signatureLen:
if t[j].kind != tyVoid:
t[pos] = t[j]
t.n[pos] = t.n[j]
inc pos
newSons t, pos
setLen t.n.sons, pos
break
proc skipIntLiteralParams*(t: PType; idgen: IdGenerator) =
for i, p in t.ikids:
if p == nil: continue
let skipped = p.skipIntLit(idgen)
if skipped != p:
t[i] = skipped
if i > 0: t.n[i].sym.typ = skipped
# when the typeof operator is used on a static input
# param, the results gets infected with static as well:
if t.returnType != nil and t.returnType.kind == tyStatic:
t.setReturnType t.returnType.skipModifier
proc propagateFieldFlags(t: PType, n: PNode) =
# This is meant for objects and tuples
# The type must be fully instantiated!
if n.isNil:
return
#internalAssert n.kind != nkRecWhen
case n.kind
of nkSym:
propagateToOwner(t, n.sym.typ)
of nkRecList, nkRecCase, nkOfBranch, nkElse:
for son in n:
propagateFieldFlags(t, son)
else: discard
proc replaceTypeVarsTAux(cl: var TReplTypeVars, t: PType): PType =
template bailout =
if (t.sym == nil) or (t.sym != nil and sfGeneratedType in t.sym.flags):
# In the first case 't.sym' can be 'nil' if the type is a ref/ptr, see
# issue https://github.com/nim-lang/Nim/issues/20416 for more details.
# Fortunately for us this works for now because partial ref/ptr types are
# not allowed in object construction, eg.
# type
# Container[T] = ...
# O = object
# val: ref Container
#
# In the second case only consider the recursion limit if the symbol is a
# type with generic parameters that have not been explicitly supplied,
# typechecking should terminate when generic parameters are explicitly
# supplied.
if cl.recursionLimit > 100:
# bail out, see bug #2509. But note this caching is in general wrong,
# look at this example where TwoVectors should not share the generic
# instantiations (bug #3112):
# type
# Vector[N: static[int]] = array[N, float64]
# TwoVectors[Na, Nb: static[int]] = (Vector[Na], Vector[Nb])
result = getOrDefault(cl.localCache, t.itemId)
if result != nil: return result
inc cl.recursionLimit
result = t
if t == nil: return
const lookupMetas = {tyStatic, tyGenericParam, tyConcept} + tyTypeClasses - {tyAnything}
if t.kind in lookupMetas or
(t.kind == tyAnything and tfRetType notin t.flags):
let lookup = cl.typeMap.lookup(t)
if lookup != nil: return lookup
case t.kind
of tyGenericInvocation:
result = handleGenericInvocation(cl, t)
if result.last.kind == tyUserTypeClass:
result.kind = tyUserTypeClassInst
of tyGenericBody:
if cl.allowMetaTypes: return
localError(
cl.c.config,
cl.info,
"cannot instantiate: '" &
typeToString(t, preferDesc) &
"'; Maybe generic arguments are missing?")
result = errorType(cl.c)
#result = replaceTypeVarsT(cl, lastSon(t))
of tyFromExpr:
if cl.allowMetaTypes: return
# This assert is triggered when a tyFromExpr was created in a cyclic
# way. You should break the cycle at the point of creation by introducing
# a call such as: `n.typ = makeTypeFromExpr(c, n.copyTree)`
# Otherwise, the cycle will be fatal for the prepareNode call below
assert t.n.typ != t
var n = prepareNode(cl, t.n)
if n.kind != nkEmpty:
if tfNonConstExpr in t.flags:
n = cl.c.semExprWithType(cl.c, n, flags = {efInTypeof})
else:
n = cl.c.semConstExpr(cl.c, n)
if n.typ.kind == tyTypeDesc:
# XXX: sometimes, chained typedescs enter here.
# It may be worth investigating why this is happening,
# because it may cause other bugs elsewhere.
result = n.typ.skipTypes({tyTypeDesc})
# result = n.typ.base
elif tfNonConstExpr in t.flags:
result = n.typ
else:
if n.typ.kind != tyStatic and n.kind != nkType:
# XXX: In the future, semConstExpr should
# return tyStatic values to let anyone make
# use of this knowledge. The patching here
# won't be necessary then.
result = newTypeS(tyStatic, cl.c, son = n.typ)
result.n = n
else:
result = n.typ
of tyInt, tyFloat:
result = skipIntLit(t, cl.c.idgen)
of tyTypeDesc:
let lookup = cl.typeMap.lookup(t)
if lookup != nil:
result = lookup
if result.kind != tyTypeDesc:
result = makeTypeDesc(cl.c, result)
elif tfUnresolved in t.flags or cl.skipTypedesc:
result = result.base
elif t.elementType.kind != tyNone:
result = makeTypeDesc(cl.c, replaceTypeVarsT(cl, t.elementType))
of tyUserTypeClass:
result = t
of tyStatic:
if cl.c.matchedConcept != nil:
# allow concepts to not instantiate statics for now
# they can't always infer them
return
if not containsGenericType(t) and (t.n == nil or t.n.kind in nkLiterals):
# no need to instantiate
return
bailout()
result = instCopyType(cl, t)
cl.localCache[t.itemId] = result
for i in FirstGenericParamAt..<result.kidsLen:
var r = result[i]
if r != nil:
r = replaceTypeVarsT(cl, r)
result[i] = r
propagateToOwner(result, r)
result.n = replaceTypeVarsN(cl, result.n)
if not cl.allowMetaTypes and result.n != nil and
result.base.kind != tyNone:
result.n = cl.c.semConstExpr(cl.c, result.n)
result.n.typ = result.base
of tyGenericInst, tyUserTypeClassInst:
bailout()
result = instCopyType(cl, t)
cl.localCache[t.itemId] = result
for i in FirstGenericParamAt..<result.kidsLen:
result[i] = replaceTypeVarsT(cl, result[i])
propagateToOwner(result, result.last)
else:
if containsGenericType(t):
#if not cl.allowMetaTypes:
bailout()
result = instCopyType(cl, t)
result.size = -1 # needs to be recomputed
#if not cl.allowMetaTypes:
cl.localCache[t.itemId] = result
for i, resulti in result.ikids:
if resulti != nil:
if resulti.kind == tyGenericBody and not cl.allowMetaTypes:
localError(cl.c.config, if t.sym != nil: t.sym.info else: cl.info,
"cannot instantiate '" &
typeToString(result[i], preferDesc) &
"' inside of type definition: '" &
t.owner.name.s & "'; Maybe generic arguments are missing?")
var r = replaceTypeVarsT(cl, resulti)
if result.kind == tyObject:
# carefully coded to not skip the precious tyGenericInst:
let r2 = r.skipTypes({tyAlias, tySink, tyOwned})
if r2.kind in {tyPtr, tyRef}:
r = skipTypes(r2, {tyPtr, tyRef})
result[i] = r
if result.kind != tyArray or i != 0:
propagateToOwner(result, r)
# bug #4677: Do not instantiate effect lists
result.n = replaceTypeVarsN(cl, result.n, ord(result.kind==tyProc))
case result.kind
of tyArray:
let idx = result.indexType
internalAssert cl.c.config, idx.kind != tyStatic
of tyObject, tyTuple:
propagateFieldFlags(result, result.n)
if result.kind == tyObject and cl.c.computeRequiresInit(cl.c, result):
result.flags.incl tfRequiresInit
of tyProc:
eraseVoidParams(result)
skipIntLiteralParams(result, cl.c.idgen)
of tyRange:
result.setIndexType result.indexType.skipTypes({tyStatic, tyDistinct})
else: discard
else:
# If this type doesn't refer to a generic type we may still want to run it
# trough replaceObjBranches in order to resolve any pending nkRecWhen nodes
result = t
# Slow path, we have some work to do
if t.kind == tyRef and t.hasElementType and t.elementType.kind == tyObject and t.elementType.n != nil:
discard replaceObjBranches(cl, t.elementType.n)
elif result.n != nil and t.kind == tyObject:
# Invalidate the type size as we may alter its structure
result.size = -1
result.n = replaceObjBranches(cl, result.n)
proc initTypeVars*(p: PContext, typeMap: LayeredIdTable, info: TLineInfo;
owner: PSym): TReplTypeVars =
result = TReplTypeVars(symMap: initSymMapping(),
localCache: initTypeMapping(), typeMap: typeMap,
info: info, c: p, owner: owner)
proc replaceTypesInBody*(p: PContext, pt: TypeMapping, n: PNode;
owner: PSym, allowMetaTypes = false,
fromStaticExpr = false, expectedType: PType = nil): PNode =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, typeMap, n.info, owner)
cl.allowMetaTypes = allowMetaTypes
pushInfoContext(p.config, n.info)
result = replaceTypeVarsN(cl, n, expectedType = expectedType)
popInfoContext(p.config)
proc prepareTypesInBody*(p: PContext, pt: TypeMapping, n: PNode;
owner: PSym = nil): PNode =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, typeMap, n.info, owner)
pushInfoContext(p.config, n.info)
result = prepareNode(cl, n)
popInfoContext(p.config)
when false:
# deadcode
proc replaceTypesForLambda*(p: PContext, pt: TIdTable, n: PNode;
original, new: PSym): PNode =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, typeMap, n.info, original)
idTablePut(cl.symMap, original, new)
pushInfoContext(p.config, n.info)
result = replaceTypeVarsN(cl, n)
popInfoContext(p.config)
proc recomputeFieldPositions*(t: PType; obj: PNode; currPosition: var int) =
if t != nil and t.baseClass != nil:
let b = skipTypes(t.baseClass, skipPtrs)
recomputeFieldPositions(b, b.n, currPosition)
case obj.kind
of nkRecList:
for i in 0..<obj.len: recomputeFieldPositions(nil, obj[i], currPosition)
of nkRecCase:
recomputeFieldPositions(nil, obj[0], currPosition)
for i in 1..<obj.len:
recomputeFieldPositions(nil, lastSon(obj[i]), currPosition)
of nkSym:
obj.sym.position = currPosition
inc currPosition
else: discard "cannot happen"
proc generateTypeInstance*(p: PContext, pt: TypeMapping, info: TLineInfo,
t: PType): PType =
# Given `t` like Foo[T]
# pt: Table with type mappings: T -> int
# Desired result: Foo[int]
# proc (x: T = 0); T -> int ----> proc (x: int = 0)
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, typeMap, info, nil)
pushInfoContext(p.config, info)
result = replaceTypeVarsT(cl, t)
popInfoContext(p.config)
let objType = result.skipTypes(abstractInst)
if objType.kind == tyObject:
var position = 0
recomputeFieldPositions(objType, objType.n, position)
proc prepareMetatypeForSigmatch*(p: PContext, pt: TypeMapping, info: TLineInfo,
t: PType): PType =
var typeMap = initLayeredTypeMap(pt)
var cl = initTypeVars(p, typeMap, info, nil)
cl.allowMetaTypes = true
pushInfoContext(p.config, info)
result = replaceTypeVarsT(cl, t)
popInfoContext(p.config)
template generateTypeInstance*(p: PContext, pt: TypeMapping, arg: PNode,
t: PType): untyped =
generateTypeInstance(p, pt, arg.info, t)
|