1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
|
#
#
# The Nim Compiler
# (c) Copyright 2013 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.
import
ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
magicsys, idents, lexer, options, parampatterns, trees,
linter, lineinfos, lowerings, modulegraphs, concepts
import std/[intsets, strutils, tables]
when defined(nimPreviewSlimSystem):
import std/assertions
type
MismatchKind* = enum
kUnknown, kAlreadyGiven, kUnknownNamedParam, kTypeMismatch, kVarNeeded,
kMissingParam, kExtraArg, kPositionalAlreadyGiven,
kGenericParamTypeMismatch, kMissingGenericParam, kExtraGenericParam
MismatchInfo* = object
kind*: MismatchKind # reason for mismatch
arg*: int # position of provided arguments that mismatches
formal*: PSym # parameter that mismatches against provided argument
# its position can differ from `arg` because of varargs
TCandidateState* = enum
csEmpty, csMatch, csNoMatch
CandidateError* = object
sym*: PSym
firstMismatch*: MismatchInfo
diagnostics*: seq[string]
enabled*: bool
CandidateErrors* = seq[CandidateError]
TCandidate* = object
c*: PContext
exactMatches*: int # also misused to prefer iters over procs
genericMatches: int # also misused to prefer constraints
subtypeMatches: int
intConvMatches: int # conversions to int are not as expensive
convMatches: int
state*: TCandidateState
callee*: PType # may not be nil!
calleeSym*: PSym # may be nil
calleeScope*: int # scope depth:
# is this a top-level symbol or a nested proc?
call*: PNode # modified call
bindings*: TypeMapping # maps types to types
magic*: TMagic # magic of operation
baseTypeMatch: bool # needed for conversions from T to openarray[T]
# for example
matchedErrorType*: bool # match is considered successful after matching
# error type to avoid cascading errors
# this is used to prevent instantiations.
genericConverter*: bool # true if a generic converter needs to
# be instantiated
coerceDistincts*: bool # this is an explicit coercion that can strip away
# a distrinct type
typedescMatched*: bool
isNoCall*: bool # misused for generic type instantiations C[T]
inferredTypes: seq[PType] # inferred types during the current signature
# matching. they will be reset if the matching
# is not successful. may replace the bindings
# table in the future.
diagnostics*: seq[string] # \
# when diagnosticsEnabled, the matching process
# will collect extra diagnostics that will be
# displayed to the user.
# triggered when overload resolution fails
# or when the explain pragma is used. may be
# triggered with an idetools command in the
# future.
# to prefer closest father object type
inheritancePenalty: int
firstMismatch*: MismatchInfo # mismatch info for better error messages
diagnosticsEnabled*: bool
TTypeRelFlag* = enum
trDontBind
trNoCovariance
trBindGenericParam # bind tyGenericParam even with trDontBind
trIsOutParam
TTypeRelFlags* = set[TTypeRelFlag]
const
isNilConversion = isConvertible # maybe 'isIntConv' fits better?
maxInheritancePenalty = high(int) div 2
proc markUsed*(c: PContext; info: TLineInfo, s: PSym; checkStyle = true)
proc markOwnerModuleAsUsed*(c: PContext; s: PSym)
proc initCandidateAux(ctx: PContext,
callee: PType): TCandidate {.inline.} =
result = TCandidate(c: ctx, exactMatches: 0, subtypeMatches: 0,
convMatches: 0, intConvMatches: 0, genericMatches: 0,
state: csEmpty, firstMismatch: MismatchInfo(),
callee: callee, call: nil, baseTypeMatch: false,
genericConverter: false, inheritancePenalty: -1
)
proc initCandidate*(ctx: PContext, callee: PType): TCandidate =
result = initCandidateAux(ctx, callee)
result.calleeSym = nil
result.bindings = initTypeMapping()
proc put(c: var TCandidate, key, val: PType) {.inline.} =
## Given: proc foo[T](x: T); foo(4)
## key: 'T'
## val: 'int' (typeof(4))
when false:
let old = idTableGet(c.bindings, key)
if old != nil:
echo "Putting ", typeToString(key), " ", typeToString(val), " and old is ", typeToString(old)
if typeToString(old) == "float32":
writeStackTrace()
if c.c.module.name.s == "temp3":
echo "binding ", key, " -> ", val
idTablePut(c.bindings, key, val.skipIntLit(c.c.idgen))
proc typeRel*(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation
proc matchGenericParam(m: var TCandidate, formal: PType, n: PNode) =
var arg = n.typ
if m.c.inGenericContext > 0:
# don't match yet-unresolved generic instantiations
while arg != nil and arg.kind == tyGenericParam:
arg = idTableGet(m.bindings, arg)
if arg == nil or arg.containsUnresolvedType:
m.state = csNoMatch
return
# fix up the type to get ready to match formal:
var formalBase = formal
while formalBase.kind == tyGenericParam and
formalBase.genericParamHasConstraints:
formalBase = formalBase.genericConstraint
if formalBase.kind == tyStatic and arg.kind != tyStatic:
# maybe call `paramTypesMatch` here, for now be conservative
if n.kind in nkSymChoices: n.flags.excl nfSem
let evaluated = m.c.semTryConstExpr(m.c, n, formalBase.skipTypes({tyStatic}))
if evaluated != nil:
arg = newTypeS(tyStatic, m.c, son = evaluated.typ)
arg.n = evaluated
elif formalBase.kind == tyTypeDesc:
if arg.kind != tyTypeDesc:
arg = makeTypeDesc(m.c, arg)
else:
arg = arg.skipTypes({tyTypeDesc})
let tm = typeRel(m, formal, arg)
if tm in {isNone, isConvertible}:
m.state = csNoMatch
m.firstMismatch.kind = kGenericParamTypeMismatch
return
proc matchGenericParams*(m: var TCandidate, binding: PNode, callee: PSym) =
## matches explicit generic instantiation `binding` against generic params of
## proc symbol `callee`
## state is set to `csMatch` if all generic params match, `csEmpty` if
## implicit generic parameters are missing (matches but cannot instantiate),
## `csNoMatch` if a constraint fails or param count doesn't match
let c = m.c
let typeParams = callee.ast[genericParamsPos]
let paramCount = typeParams.len
let bindingCount = binding.len-1
if bindingCount > paramCount:
m.state = csNoMatch
m.firstMismatch.kind = kExtraGenericParam
m.firstMismatch.arg = paramCount + 1
return
for i in 1..bindingCount:
matchGenericParam(m, typeParams[i-1].typ, binding[i])
if m.state == csNoMatch:
m.firstMismatch.arg = i
m.firstMismatch.formal = typeParams[i-1].sym
return
# not enough generic params given, check if remaining have defaults:
for i in bindingCount ..< paramCount:
let param = typeParams[i]
assert param.kind == nkSym
let paramSym = param.sym
if paramSym.ast != nil:
matchGenericParam(m, param.typ, paramSym.ast)
if m.state == csNoMatch:
m.firstMismatch.arg = i + 1
m.firstMismatch.formal = paramSym
return
elif tfImplicitTypeParam in paramSym.typ.flags:
# not a mismatch, but can't create sym
m.state = csEmpty
return
else:
m.state = csNoMatch
m.firstMismatch.kind = kMissingGenericParam
m.firstMismatch.arg = i + 1
m.firstMismatch.formal = paramSym
return
m.state = csMatch
proc copyingEraseVoidParams(m: TCandidate, t: var PType) =
## if `t` is a proc type with void parameters, copies it and erases them
assert t.kind == tyProc
let original = t
var copied = false
for i in 1 ..< original.len:
var f = original[i]
var isVoidParam = f.kind == tyVoid
if not isVoidParam:
let prev = idTableGet(m.bindings, f)
if prev != nil: f = prev
isVoidParam = f.kind == tyVoid
if isVoidParam:
if not copied:
# keep first i children
t = copyType(original, m.c.idgen, t.owner)
t.setSonsLen(i)
t.n = copyNode(original.n)
t.n.sons = original.n.sons
t.n.sons.setLen(i)
copied = true
elif copied:
t.add(f)
t.n.add(original.n[i])
proc initCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1,
diagnosticsEnabled = false): TCandidate =
result = initCandidateAux(ctx, callee.typ)
result.calleeSym = callee
if callee.kind in skProcKinds and calleeScope == -1:
result.calleeScope = cmpScopes(ctx, callee)
else:
result.calleeScope = calleeScope
result.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil
result.diagnosticsEnabled = diagnosticsEnabled
result.magic = result.calleeSym.magic
result.bindings = initTypeMapping()
if binding != nil and callee.kind in routineKinds:
matchGenericParams(result, binding, callee)
let genericMatch = result.state
if genericMatch != csNoMatch:
result.state = csEmpty
if genericMatch == csMatch: # csEmpty if not fully instantiated
# instantiate the type, emulates old compiler behavior
# wouldn't be needed if sigmatch could handle complex cases,
# examples are in texplicitgenerics
# might be buggy, see rest of generateInstance if problems occur
let typ = ctx.instantiateOnlyProcType(ctx, result.bindings, callee, binding.info)
result.callee = typ
else:
# createThread[void] requires this if the above branch is removed:
copyingEraseVoidParams(result, result.callee)
proc newCandidate*(ctx: PContext, callee: PSym,
binding: PNode, calleeScope = -1): TCandidate =
result = initCandidate(ctx, callee, binding, calleeScope)
proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
result = initCandidate(ctx, callee)
proc copyCandidate(dest: var TCandidate, src: TCandidate) =
dest.c = src.c
dest.exactMatches = src.exactMatches
dest.subtypeMatches = src.subtypeMatches
dest.convMatches = src.convMatches
dest.intConvMatches = src.intConvMatches
dest.genericMatches = src.genericMatches
dest.state = src.state
dest.callee = src.callee
dest.calleeSym = src.calleeSym
dest.call = copyTree(src.call)
dest.baseTypeMatch = src.baseTypeMatch
dest.bindings = src.bindings
proc checkGeneric(a, b: TCandidate): int =
let c = a.c
let aa = a.callee
let bb = b.callee
var winner = 0
for aai, bbi in underspecifiedPairs(aa, bb, 1):
var ma = newCandidate(c, bbi)
let tra = typeRel(ma, bbi, aai, {trDontBind})
var mb = newCandidate(c, aai)
let trb = typeRel(mb, aai, bbi, {trDontBind})
if tra == isGeneric and trb in {isNone, isInferred, isInferredConvertible}:
if winner == -1: return 0
winner = 1
if trb == isGeneric and tra in {isNone, isInferred, isInferredConvertible}:
if winner == 1: return 0
winner = -1
result = winner
proc sumGeneric(t: PType): int =
# count the "genericness" so that Foo[Foo[T]] has the value 3
# and Foo[T] has the value 2 so that we know Foo[Foo[T]] is more
# specific than Foo[T].
result = 0
var t = t
while true:
case t.kind
of tyAlias, tySink, tyNot: t = t.skipModifier
of tyArray, tyRef, tyPtr, tyDistinct, tyUncheckedArray,
tyOpenArray, tyVarargs, tySet, tyRange, tySequence,
tyLent, tyOwned, tyVar:
t = t.elementType
inc result
of tyBool, tyChar, tyEnum, tyObject, tyPointer, tyVoid,
tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64, tyCompositeTypeClass, tyBuiltInTypeClass:
inc result
break
of tyGenericBody:
t = t.typeBodyImpl
of tyGenericInst, tyStatic:
t = t.skipModifier
inc result
of tyOr:
var maxBranch = 0
for branch in t.kids:
let branchSum = sumGeneric(branch)
if branchSum > maxBranch: maxBranch = branchSum
inc result, maxBranch
break
of tyTypeDesc:
t = t.elementType
if t.kind == tyEmpty: break
inc result
of tyGenericParam:
if t.len > 0:
t = t.skipModifier
else:
inc result
break
of tyUntyped, tyTyped: break
of tyGenericInvocation, tyTuple, tyAnd:
result += ord(t.kind == tyAnd)
for a in t.kids:
if a != nil:
result += sumGeneric(a)
break
of tyProc:
if t.returnType != nil:
result += sumGeneric(t.returnType)
for _, a in t.paramTypes:
result += sumGeneric(a)
break
else:
break
proc complexDisambiguation(a, b: PType): int =
# 'a' matches better if *every* argument matches better or equal than 'b'.
var winner = 0
for ai, bi in underspecifiedPairs(a, b, 1):
let x = ai.sumGeneric
let y = bi.sumGeneric
if x != y:
if winner == 0:
if x > y: winner = 1
else: winner = -1
elif x > y:
if winner != 1:
# contradiction
return 0
else:
if winner != -1:
return 0
result = winner
when false:
var x, y: int
for i in 1..<a.len: x += ai.sumGeneric
for i in 1..<b.len: y += bi.sumGeneric
result = x - y
proc writeMatches*(c: TCandidate) =
echo "Candidate '", c.calleeSym.name.s, "' at ", c.c.config $ c.calleeSym.info
echo " exact matches: ", c.exactMatches
echo " generic matches: ", c.genericMatches
echo " subtype matches: ", c.subtypeMatches
echo " intconv matches: ", c.intConvMatches
echo " conv matches: ", c.convMatches
echo " inheritance: ", c.inheritancePenalty
proc cmpInheritancePenalty(a, b: int): int =
var eb = b
var ea = a
if b < 0:
eb = maxInheritancePenalty # defacto max penalty
if a < 0:
ea = maxInheritancePenalty
eb - ea
proc cmpCandidates*(a, b: TCandidate, isFormal=true): int =
result = a.exactMatches - b.exactMatches
if result != 0: return
result = a.genericMatches - b.genericMatches
if result != 0: return
result = a.subtypeMatches - b.subtypeMatches
if result != 0: return
result = a.intConvMatches - b.intConvMatches
if result != 0: return
result = a.convMatches - b.convMatches
if result != 0: return
result = cmpInheritancePenalty(a.inheritancePenalty, b.inheritancePenalty)
if result != 0: return
if isFormal:
# check for generic subclass relation
result = checkGeneric(a, b)
if result != 0: return
# prefer more specialized generic over more general generic:
result = complexDisambiguation(a.callee, b.callee)
if result != 0: return
# only as a last resort, consider scoping:
result = a.calleeScope - b.calleeScope
proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
if arg.kind in nkSymChoices:
result = typeToString(arg[0].typ, prefer)
for i in 1..<arg.len:
result.add(" | ")
result.add typeToString(arg[i].typ, prefer)
elif arg.typ == nil:
result = "void"
else:
result = arg.typ.typeToString(prefer)
template describeArgImpl(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName) =
var arg = n[i]
if n[i].kind == nkExprEqExpr:
result.add renderTree(n[i][0])
result.add ": "
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
arg = c.semTryExpr(c, n[i][1])
if arg == nil:
arg = n[i][1]
arg.typ = newTypeS(tyUntyped, c)
else:
if arg.typ == nil:
arg.typ = newTypeS(tyVoid, c)
n[i].typ = arg.typ
n[i][1] = arg
else:
if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo, nkElse,
nkOfBranch, nkElifBranch,
nkExceptBranch}:
arg = c.semTryExpr(c, n[i])
if arg == nil:
arg = n[i]
arg.typ = newTypeS(tyUntyped, c)
else:
if arg.typ == nil:
arg.typ = newTypeS(tyVoid, c)
n[i] = arg
if arg.typ != nil and arg.typ.kind == tyError: return
result.add argTypeToString(arg, prefer)
proc describeArg*(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName): string =
result = ""
describeArgImpl(c, n, i, startIdx, prefer)
proc describeArgs*(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
result = ""
for i in startIdx..<n.len:
describeArgImpl(c, n, i, startIdx, prefer)
if i != n.len - 1: result.add ", "
proc concreteType(c: TCandidate, t: PType; f: PType = nil): PType =
case t.kind
of tyTypeDesc:
if c.isNoCall: result = t
else: result = nil
of tySequence, tySet:
if t.elementType.kind == tyEmpty: result = nil
else: result = t
of tyGenericParam, tyAnything, tyConcept:
result = t
if c.isNoCall: return
while true:
result = idTableGet(c.bindings, t)
if result == nil:
break # it's ok, no match
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if result.kind != tyGenericParam: break
of tyGenericInvocation:
result = nil
of tyOwned:
# bug #11257: the comparison system.`==`[T: proc](x, y: T) works
# better without the 'owned' type:
if f != nil and f.hasElementType and f.elementType.skipTypes({tyBuiltInTypeClass, tyOr}).kind == tyProc:
result = t.skipModifier
else:
result = t
else:
result = t # Note: empty is valid here
proc handleRange(c: PContext, f, a: PType, min, max: TTypeKind): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
let k = ab.kind
let nf = c.config.normalizeKind(f.kind)
let na = c.config.normalizeKind(k)
if k == f.kind:
# `a` is a range type matching its base type
# see very bottom for range types matching different types
if isIntLit(ab):
# range type can only give isFromIntLit for base type
result = isFromIntLit
else:
result = isSubrange
elif a.kind == tyInt and f.kind in {tyRange, tyInt..tyInt64,
tyUInt..tyUInt64} and
isIntLit(ab) and getInt(ab.n) >= firstOrd(nil, f) and
getInt(ab.n) <= lastOrd(nil, f):
# passing 'nil' to firstOrd/lastOrd here as type checking rules should
# not depend on the target integer size configurations!
# integer literal in the proper range; we want ``i16 + 4`` to stay an
# ``int16`` operation so we declare the ``4`` pseudo-equal to int16
result = isFromIntLit
elif a.kind == tyInt and nf == c.config.targetSizeSignedToKind:
result = isIntConv
elif a.kind == tyUInt and nf == c.config.targetSizeUnsignedToKind:
result = isIntConv
elif f.kind == tyInt and na in {tyInt8 .. pred(c.config.targetSizeSignedToKind)}:
result = isIntConv
elif f.kind == tyUInt and na in {tyUInt8 .. pred(c.config.targetSizeUnsignedToKind)}:
result = isIntConv
elif k >= min and k <= max:
result = isConvertible
elif a.kind == tyRange and
# Make sure the conversion happens between types w/ same signedness
(f.kind in {tyInt..tyInt64} and a[0].kind in {tyInt..tyInt64} or
f.kind in {tyUInt8..tyUInt32} and a[0].kind in {tyUInt8..tyUInt32}) and
a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f):
# passing 'nil' to firstOrd/lastOrd here as type checking rules should
# not depend on the target integer size configurations!
result = isConvertible
else: result = isNone
proc isConvertibleToRange(c: PContext, f, a: PType): bool =
if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
case f.kind
of tyInt8: result = isIntLit(a) or a.kind in {tyInt8}
of tyInt16: result = isIntLit(a) or a.kind in {tyInt8, tyInt16}
of tyInt32: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32}
# This is wrong, but seems like there's a lot of code that relies on it :(
of tyInt, tyUInt: result = true
# of tyInt: result = isIntLit(a) or a.kind in {tyInt8 .. c.config.targetSizeSignedToKind}
of tyInt64: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32, tyInt, tyInt64}
of tyUInt8: result = isIntLit(a) or a.kind in {tyUInt8}
of tyUInt16: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16}
of tyUInt32: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32}
# of tyUInt: result = isIntLit(a) or a.kind in {tyUInt8 .. c.config.targetSizeUnsignedToKind}
of tyUInt64: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt64}
else: result = false
elif f.kind in {tyFloat..tyFloat128}:
# `isIntLit` is correct and should be used above as well, see PR:
# https://github.com/nim-lang/Nim/pull/11197
result = isIntLit(a) or a.kind in {tyFloat..tyFloat128}
else:
result = false
proc handleFloatRange(f, a: PType): TTypeRelation =
if a.kind == f.kind:
result = isEqual
else:
let ab = skipTypes(a, {tyRange})
var k = ab.kind
if k == f.kind: result = isSubrange
elif isFloatLit(ab): result = isFromIntLit
elif isIntLit(ab): result = isConvertible
elif k >= tyFloat and k <= tyFloat128:
# conversion to "float32" is not as good:
if f.kind == tyFloat32: result = isConvertible
else: result = isIntConv
else: result = isNone
proc reduceToBase(f: PType): PType =
#[
Returns the lowest order (most general) type that that is compatible with the input.
E.g.
A[T] = ptr object ... A -> ptr object
A[N: static[int]] = array[N, int] ... A -> array
]#
case f.kind:
of tyGenericParam:
if f.len <= 0 or f.skipModifier == nil:
result = f
else:
result = reduceToBase(f.skipModifier)
of tyGenericInvocation:
result = reduceToBase(f.baseClass)
of tyCompositeTypeClass, tyAlias:
if not f.hasElementType or f.elementType == nil:
result = f
else:
result = reduceToBase(f.elementType)
of tyGenericInst:
result = reduceToBase(f.skipModifier)
of tyGenericBody:
result = reduceToBase(f.typeBodyImpl)
of tyUserTypeClass:
if f.isResolvedUserTypeClass:
result = f.base # ?? idk if this is right
else:
result = f.skipModifier
of tyStatic, tyOwned, tyVar, tyLent, tySink:
result = reduceToBase(f.base)
of tyInferred:
# This is not true "After a candidate type is selected"
result = reduceToBase(f.base)
of tyRange:
result = f.elementType
else:
result = f
proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) =
if fGenericOrigin != nil and last.kind == tyGenericInst and
last.kidsLen-1 == fGenericOrigin.kidsLen:
for i in FirstGenericParamAt..<fGenericOrigin.kidsLen:
let x = idTableGet(c.bindings, fGenericOrigin[i])
if x == nil:
put(c, fGenericOrigin[i], last[i])
proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int =
var t = a
assert t.kind == tyObject
var depth = 0
var last = a
while t != nil and not sameObjectTypes(f, t):
if t.kind != tyObject: # avoid entering generic params etc
return -1
t = t.baseClass
if t == nil: break
last = t
t = skipTypes(t, skipPtrs)
inc depth
if t != nil:
genericParamPut(c, last, fGenericOrigin)
result = depth
else:
result = -1
type
SkippedPtr = enum skippedNone, skippedRef, skippedPtr
proc skipToObject(t: PType; skipped: var SkippedPtr): PType =
var r = t
# we're allowed to skip one level of ptr/ref:
var ptrs = 0
while r != nil:
case r.kind
of tyGenericInvocation:
r = r.genericHead
of tyRef:
inc ptrs
skipped = skippedRef
r = r.elementType
of tyPtr:
inc ptrs
skipped = skippedPtr
r = r.elementType
of tyGenericInst, tyAlias, tySink, tyOwned:
r = r.elementType
of tyGenericBody:
r = r.typeBodyImpl
else:
break
if r.kind == tyObject and ptrs <= 1: result = r
else: result = nil
proc isGenericSubtype(c: var TCandidate; a, f: PType, d: var int, fGenericOrigin: PType): bool =
assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody}
var askip = skippedNone
var fskip = skippedNone
var t = a.skipToObject(askip)
let r = f.skipToObject(fskip)
if r == nil: return false
var depth = 0
var last = a
# XXX sameObjectType can return false here. Need to investigate
# why that is but sameObjectType does way too much work here anyway.
while t != nil and r.sym != t.sym and askip == fskip:
t = t.baseClass
if t == nil: break
last = t
t = t.skipToObject(askip)
inc depth
if t != nil and askip == fskip:
genericParamPut(c, last, fGenericOrigin)
d = depth
result = true
else:
result = false
proc minRel(a, b: TTypeRelation): TTypeRelation =
if a <= b: result = a
else: result = b
proc recordRel(c: var TCandidate, f, a: PType, flags: TTypeRelFlags): TTypeRelation =
result = isNone
if sameType(f, a):
result = isEqual
elif sameTupleLengths(a, f):
result = isEqual
let firstField = if f.kind == tyTuple: 0
else: 1
for _, ff, aa in tupleTypePairs(f, a):
var m = typeRel(c, ff, aa, flags)
if m < isSubtype: return isNone
if m == isSubtype and aa.kind != tyNil and c.inheritancePenalty > -1:
# we can't process individual element type conversions from a
# type conversion for the whole tuple
# subtype relations need type conversions when inheritance is used
return isNone
result = minRel(result, m)
if f.n != nil and a.n != nil:
for i in 0..<f.n.len:
# check field names:
if f.n[i].kind != nkSym: return isNone
elif a.n[i].kind != nkSym: return isNone
else:
var x = f.n[i].sym
var y = a.n[i].sym
if f.kind == tyObject and typeRel(c, x.typ, y.typ, flags) < isSubtype:
return isNone
if x.name.id != y.name.id: return isNone
proc allowsNil(f: PType): TTypeRelation {.inline.} =
result = if tfNotNil notin f.flags: isSubtype else: isNone
proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
result = (f.kind != a.kind and
(f.kind in {tyVar, tyLent, tySink} or a.kind in {tyVar, tyLent, tySink})) or
isOutParam(f) != isOutParam(a)
proc procParamTypeRel(c: var TCandidate; f, a: PType): TTypeRelation =
## For example we have:
## ```nim
## proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
## proc innerProc[Q,W](q: Q): W = ...
## ```
## And we want to match: myMap(@[1,2,3], innerProc)
## This proc (procParamTypeRel) will do the following steps in
## three different calls:
## - matches f=T to a=Q. Since f is metatype, we resolve it
## to int (which is already known at this point). So in this case
## Q=int mapping will be saved to c.bindings.
## - matches f=S to a=W. Both of these metatypes are unknown, so we
## return with isBothMetaConvertible to ask for rerun.
## - matches f=S to a=W. At this point the return type of innerProc
## is known (we get it from c.bindings). We can use that value
## to match with f, and save back to c.bindings.
var
f = f
a = a
if a.isMetaType:
let aResolved = idTableGet(c.bindings, a)
if aResolved != nil:
a = aResolved
if a.isMetaType:
if f.isMetaType:
# We are matching a generic proc (as proc param)
# to another generic type appearing in the proc
# signature. There is a chance that the target
# type is already fully-determined, so we are
# going to try resolve it
if c.call != nil:
f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
else:
f = nil
if f == nil or f.isMetaType:
# no luck resolving the type, so the inference fails
return isBothMetaConvertible
# Note that this typeRel call will save a's resolved type into c.bindings
let reverseRel = typeRel(c, a, f)
if reverseRel >= isGeneric:
result = isInferred
#inc c.genericMatches
else:
result = isNone
else:
# Note that this typeRel call will save f's resolved type into c.bindings
# if f is metatype.
result = typeRel(c, f, a)
if result <= isSubrange or inconsistentVarTypes(f, a):
result = isNone
#if result == isEqual:
# inc c.exactMatches
proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
case a.kind
of tyProc:
var f = f
copyingEraseVoidParams(c, f)
if f.signatureLen != a.signatureLen: return
result = isEqual # start with maximum; also correct for no
# params at all
if f.flags * {tfIterator} != a.flags * {tfIterator}:
return isNone
template checkParam(f, a) =
result = minRel(result, procParamTypeRel(c, f, a))
if result == isNone: return
# Note: We have to do unification for the parameters before the
# return type!
for i in 1..<f.len:
checkParam(f[i], a[i])
if f[0] != nil:
if a[0] != nil:
checkParam(f[0], a[0])
else:
return isNone
elif a[0] != nil:
return isNone
result = getProcConvMismatch(c.c.config, f, a, result)[1]
when useEffectSystem:
if compatibleEffects(f, a) != efCompat: return isNone
when defined(drnim):
if not c.c.graph.compatibleProps(c.c.graph, f, a): return isNone
of tyNil:
result = f.allowsNil
else: result = isNone
proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
template checkRange[T](a0, a1, f0, f1: T): TTypeRelation =
if a0 == f0 and a1 == f1:
isEqual
elif a0 >= f0 and a1 <= f1:
isConvertible
elif a0 <= f1 and f0 <= a1:
# X..Y and C..D overlap iff (X <= D and C <= Y)
isConvertible
else:
isNone
if f.isOrdinalType:
checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f))
else:
checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f))
proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType =
var
c = m.c
typeClass = ff.skipTypes({tyUserTypeClassInst})
body = typeClass.n[3]
matchedConceptContext = TMatchedConcept()
prevMatchedConcept = c.matchedConcept
prevCandidateType = typeClass[0][0]
if prevMatchedConcept != nil:
matchedConceptContext.prev = prevMatchedConcept
matchedConceptContext.depth = prevMatchedConcept.depth + 1
if prevMatchedConcept.depth > 4:
localError(m.c.graph.config, body.info, $body & " too nested for type matching")
return nil
openScope(c)
matchedConceptContext.candidateType = a
typeClass[0][0] = a
c.matchedConcept = addr(matchedConceptContext)
defer:
c.matchedConcept = prevMatchedConcept
typeClass[0][0] = prevCandidateType
closeScope(c)
var typeParams: seq[(PSym, PType)] = @[]
if ff.kind == tyUserTypeClassInst:
for i in 1..<(ff.len - 1):
var
typeParamName = ff.base[i-1].sym.name
typ = ff[i]
param: PSym = nil
alreadyBound = idTableGet(m.bindings, typ)
if alreadyBound != nil: typ = alreadyBound
template paramSym(kind): untyped =
newSym(kind, typeParamName, c.idgen, typeClass.sym, typeClass.sym.info, {})
block addTypeParam:
for prev in typeParams:
if prev[1].id == typ.id:
param = paramSym prev[0].kind
param.typ = prev[0].typ
break addTypeParam
case typ.kind
of tyStatic:
param = paramSym skConst
param.typ = typ.exactReplica
#copyType(typ, c.idgen, typ.owner)
if typ.n == nil:
param.typ.flags.incl tfInferrableStatic
else:
param.ast = typ.n
of tyFromExpr:
param = paramSym skVar
param.typ = typ.exactReplica
#copyType(typ, c.idgen, typ.owner)
else:
param = paramSym skType
param.typ = if typ.isMetaType:
newTypeS(tyInferred, c, typ)
else:
makeTypeDesc(c, typ)
typeParams.add((param, typ))
addDecl(c, param)
var
oldWriteHook = default typeof(m.c.config.writelnHook)
diagnostics: seq[string] = @[]
errorPrefix: string
flags: TExprFlags = {}
collectDiagnostics = m.diagnosticsEnabled or
sfExplain in typeClass.sym.flags
if collectDiagnostics:
oldWriteHook = m.c.config.writelnHook
# XXX: we can't write to m.diagnostics directly, because
# Nim doesn't support capturing var params in closures
diagnostics = @[]
flags = {efExplain}
m.c.config.writelnHook = proc (s: string) =
if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":"
let msg = s.replace("Error:", errorPrefix)
if oldWriteHook != nil: oldWriteHook msg
diagnostics.add msg
var checkedBody = c.semTryExpr(c, body.copyTree, flags)
if collectDiagnostics:
m.c.config.writelnHook = oldWriteHook
for msg in diagnostics:
m.diagnostics.add msg
m.diagnosticsEnabled = true
if checkedBody == nil: return nil
# The inferrable type params have been identified during the semTryExpr above.
# We need to put them in the current sigmatch's binding table in order for them
# to be resolvable while matching the rest of the parameters
for p in typeParams:
put(m, p[1], p[0].typ)
if ff.kind == tyUserTypeClassInst:
result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff)
else:
result = ff.exactReplica
#copyType(ff, c.idgen, ff.owner)
result.n = checkedBody
proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool =
# XXX This is bad as 'considerQuotedIdent' can produce an error!
if rules.kind == nkWith:
for r in rules:
if considerQuotedIdent(m.c, r) == callIdent: return true
return false
else:
for r in rules:
if considerQuotedIdent(m.c, r) == callIdent: return false
return true
proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType =
if t != nil and t.kind == tyDistinct and t.n != nil and
shouldSkipDistinct(m, t.n, callee.name):
result = t.base
else:
result = t
proc tryResolvingStaticExpr(c: var TCandidate, n: PNode,
allowUnresolved = false,
allowCalls = false,
expectedType: PType = nil): PNode =
# Consider this example:
# type Value[N: static[int]] = object
# proc foo[N](a: Value[N], r: range[0..(N-1)])
# Here, N-1 will be initially nkStaticExpr that can be evaluated only after
# N is bound to a concrete value during the matching of the first param.
# This proc is used to evaluate such static expressions.
let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil,
allowMetaTypes = allowUnresolved)
if not allowCalls and instantiated.kind in nkCallKinds:
return nil
result = c.c.semExpr(c.c, instantiated)
proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool =
# This is a simple integer arithimetic equation solver,
# capable of deriving the value of a static parameter in
# expressions such as (N + 5) / 2 = rhs
#
# Preconditions:
#
# * The input of this proc must be semantized
# - all templates should be expanded
# - aby constant folding possible should already be performed
#
# * There must be exactly one unresolved static parameter
#
# Result:
#
# The proc will return true if the static types was successfully
# inferred. The result will be bound to the original static type
# in the TCandidate.
#
if lhs.kind in nkCallKinds and lhs[0].kind == nkSym:
case lhs[0].sym.magic
of mAddI, mAddU, mInc, mSucc:
if lhs[1].kind == nkIntLit:
return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal)
of mDec, mSubI, mSubU, mPred:
if lhs[1].kind == nkIntLit:
return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal)
of mMulI, mMulU:
if lhs[1].kind == nkIntLit:
if rhs mod lhs[1].intVal == 0:
return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal)
elif lhs[2].kind == nkIntLit:
if rhs mod lhs[2].intVal == 0:
return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal)
of mDivI, mDivU:
if lhs[1].kind == nkIntLit:
if lhs[1].intVal mod rhs == 0:
return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs)
elif lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs)
of mShlI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal)
of mShrI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal)
of mAshrI:
if lhs[2].kind == nkIntLit:
return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal))
of mUnaryMinusI:
return inferStaticParam(c, lhs[1], -rhs)
of mUnaryPlusI:
return inferStaticParam(c, lhs[1], rhs)
else: discard
elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and
(lhs.typ.n == nil or idTableGet(c.bindings, lhs.typ) == nil):
var inferred = newTypeS(tyStatic, c.c, lhs.typ.elementType)
inferred.n = newIntNode(nkIntLit, rhs)
put(c, lhs.typ, inferred)
if c.c.matchedConcept != nil:
# inside concepts, binding is currently done with
# direct mutation of the involved types:
lhs.typ.n = inferred.n
return true
return false
proc failureToInferStaticParam(conf: ConfigRef; n: PNode) =
let staticParam = n.findUnresolvedStatic
let name = if staticParam != nil: staticParam.sym.name.s
else: "unknown"
localError(conf, n.info, "cannot infer the value of the static param '" & name & "'")
proc inferStaticsInRange(c: var TCandidate,
inferred, concrete: PType): TTypeRelation =
let lowerBound = tryResolvingStaticExpr(c, inferred.n[0],
allowUnresolved = true)
let upperBound = tryResolvingStaticExpr(c, inferred.n[1],
allowUnresolved = true)
template doInferStatic(e: PNode, r: Int128) =
var exp = e
var rhs = r
if inferStaticParam(c, exp, toInt64(rhs)):
return isGeneric
else:
failureToInferStaticParam(c.c.config, exp)
result = isNone
if lowerBound.kind == nkIntLit:
if upperBound.kind == nkIntLit:
if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1:
return isGeneric
else:
return isNone
doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1)
elif upperBound.kind == nkIntLit:
doInferStatic(lowerBound, getInt(upperBound) + 1 - lengthOrd(c.c.config, concrete))
template subtypeCheck() =
case result
of isIntConv:
result = isNone
of isSubrange:
discard # XXX should be isNone with preview define, warnings
of isConvertible:
if f.last.skipTypes(abstractInst).kind != tyOpenArray:
# exclude var openarray which compiler supports
result = isNone
of isSubtype:
if f.last.skipTypes(abstractInst).kind in {
tyRef, tyPtr, tyVar, tyLent, tyOwned}:
# compiler can't handle subtype conversions with pointer indirection
result = isNone
else: discard
proc isCovariantPtr(c: var TCandidate, f, a: PType): bool =
# this proc is always called for a pair of matching types
assert f.kind == a.kind
template baseTypesCheck(lhs, rhs: PType): bool =
lhs.kind notin {tyPtr, tyRef, tyVar, tyLent, tyOwned} and
typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype
case f.kind
of tyRef, tyPtr, tyOwned:
return baseTypesCheck(f.base, a.base)
of tyGenericInst:
let body = f.base
return body == a.base and
a.len == 3 and
tfWeakCovariant notin body[0].flags and
baseTypesCheck(f[1], a[1])
else:
return false
when false:
proc maxNumericType(prev, candidate: PType): PType =
let c = candidate.skipTypes({tyRange})
template greater(s) =
if c.kind in s: result = c
case prev.kind
of tyInt: greater({tyInt64})
of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64})
of tyInt16: greater({tyInt, tyInt32, tyInt64})
of tyInt32: greater({tyInt64})
of tyUInt: greater({tyUInt64})
of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64})
of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64})
of tyUInt32: greater({tyUInt64})
of tyFloat32: greater({tyFloat64, tyFloat128})
of tyFloat64: greater({tyFloat128})
else: discard
template skipOwned(a) =
if a.kind == tyOwned: a = a.skipTypes({tyOwned, tyGenericInst})
proc typeRel(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation =
# typeRel can be used to establish various relationships between types:
#
# 1) When used with concrete types, it will check for type equivalence
# or a subtype relationship.
#
# 2) When used with a concrete type against a type class (such as generic
# signature of a proc), it will check whether the concrete type is a member
# of the designated type class.
#
# 3) When used with two type classes, it will check whether the types
# matching the first type class (aOrig) are a strict subset of the types matching
# the other (f). This allows us to compare the signatures of generic procs in
# order to give preferrence to the most specific one:
#
# seq[seq[any]] is a strict subset of seq[any] and hence more specific.
result = isNone
assert(f != nil)
when declared(deallocatedRefId):
let corrupt = deallocatedRefId(cast[pointer](f))
if corrupt != 0:
c.c.config.quitOrRaise "it's corrupt " & $corrupt
if f.kind == tyUntyped:
if aOrig != nil: put(c, f, aOrig)
return isGeneric
assert(aOrig != nil)
var
useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and
not c.isNoCall and
f.kind != tyTypeDesc and
tfExplicit notin aOrig.flags and
tfConceptMatchedTypeSym notin aOrig.flags
aOrig = if useTypeLoweringRuleInTypeClass:
aOrig.skipTypes({tyTypeDesc})
else:
aOrig
if aOrig.kind == tyInferred:
let prev = aOrig.previouslyInferred
if prev != nil:
return typeRel(c, f, prev, flags)
else:
var candidate = f
case f.kind
of tyGenericParam:
var prev = idTableGet(c.bindings, f)
if prev != nil: candidate = prev
of tyFromExpr:
let computedType = tryResolvingStaticExpr(c, f.n).typ
case computedType.kind
of tyTypeDesc:
candidate = computedType.base
of tyStatic:
candidate = computedType
else:
# XXX What is this non-sense? Error reporting in signature matching?
discard "localError(f.n.info, errTypeExpected)"
else:
discard
result = typeRel(c, aOrig.base, candidate, flags)
if result != isNone:
c.inferredTypes.add aOrig
aOrig.add candidate
result = isEqual
return
template doBind: bool = trDontBind notin flags
# var, sink and static arguments match regular modifier-free types
var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent, tySink}), c.calleeSym)
# XXX: Theoretically, maybeSkipDistinct could be called before we even
# start the param matching process. This could be done in `prepareOperand`
# for example, but unfortunately `prepareOperand` is not called in certain
# situation when nkDotExpr are rotated to nkDotCalls
if aOrig.kind in {tyAlias, tySink}:
return typeRel(c, f, skipModifier(aOrig), flags)
if a.kind == tyGenericInst and
skipTypes(f, {tyStatic, tyVar, tyLent, tySink}).kind notin {
tyGenericBody, tyGenericInvocation,
tyGenericInst, tyGenericParam} + tyTypeClasses:
return typeRel(c, f, skipModifier(a), flags)
if a.isResolvedUserTypeClass:
return typeRel(c, f, a.skipModifier, flags)
template bindingRet(res) =
if doBind:
let bound = aOrig.skipTypes({tyRange}).skipIntLit(c.c.idgen)
put(c, f, bound)
return res
template considerPreviousT(body: untyped) =
var prev = idTableGet(c.bindings, f)
if prev == nil: body
else: return typeRel(c, prev, a, flags)
if c.c.inGenericContext > 0 and not c.isNoCall and
(tfUnresolved in a.flags or a.kind in tyTypeClasses):
# cheap check for unresolved arg, not nested
return isNone
case a.kind
of tyOr:
# XXX: deal with the current dual meaning of tyGenericParam
c.typedescMatched = true
# seq[int|string] vs seq[number]
# both int and string must match against number
# but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
result = isGeneric
for branch in a.kids:
let x = typeRel(c, f, branch, flags + {trDontBind})
if x == isNone: return isNone
if x < result: result = x
return result
of tyAnd:
# XXX: deal with the current dual meaning of tyGenericParam
c.typedescMatched = true
# seq[Sortable and Iterable] vs seq[Sortable]
# only one match is enough
for branch in a.kids:
let x = typeRel(c, f, branch, flags + {trDontBind})
if x != isNone:
return if x >= isGeneric: isGeneric else: x
return isNone
of tyIterable:
if f.kind != tyIterable: return isNone
of tyNot:
case f.kind
of tyNot:
# seq[!int] vs seq[!number]
# seq[float] matches the first, but not the second
# we must turn the problem around:
# is number a subset of int?
return typeRel(c, a.elementType, f.elementType, flags)
else:
# negative type classes are essentially infinite,
# so only the `any` type class is their superset
return if f.kind == tyAnything: isGeneric
else: isNone
of tyAnything:
if f.kind == tyAnything: return isGeneric
else: return isNone
of tyUserTypeClass, tyUserTypeClassInst:
if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4:
# consider this: 'var g: Node' *within* a concept where 'Node'
# is a concept too (tgraph)
inc c.c.matchedConcept.depth
let x = typeRel(c, a, f, flags + {trDontBind})
if x >= isGeneric:
return isGeneric
of tyFromExpr:
if c.c.inGenericContext > 0:
if not c.isNoCall:
# generic type bodies can sometimes compile call expressions
# prevent expressions with unresolved types from
# being passed as parameters
return isNone
else:
# Foo[templateCall(T)] shouldn't fail early if Foo has a constraint
# and we can't evaluate `templateCall(T)` yet
return isGeneric
else: discard
case f.kind
of tyEnum:
if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
of tyBool, tyChar:
if a.kind == f.kind: result = isEqual
elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
of tyRange:
if a.kind == f.kind:
if f.base.kind == tyNone: return isGeneric
result = typeRel(c, base(f), base(a), flags)
# bugfix: accept integer conversions here
#if result < isGeneric: result = isNone
if result notin {isNone, isGeneric}:
# resolve any late-bound static expressions
# that may appear in the range:
let expectedType = base(f)
for i in 0..1:
if f.n[i].kind == nkStaticExpr:
let r = tryResolvingStaticExpr(c, f.n[i], expectedType = expectedType)
if r != nil:
f.n[i] = r
result = typeRangeRel(f, a)
else:
let f = skipTypes(f, {tyRange})
if f.kind == a.kind and (f.kind != tyEnum or sameEnumTypes(f, a)):
result = isIntConv
elif isConvertibleToRange(c.c, f, a):
result = isConvertible # a convertible to f
of tyInt: result = handleRange(c.c, f, a, tyInt8, c.c.config.targetSizeSignedToKind)
of tyInt8: result = handleRange(c.c, f, a, tyInt8, tyInt8)
of tyInt16: result = handleRange(c.c, f, a, tyInt8, tyInt16)
of tyInt32: result = handleRange(c.c, f, a, tyInt8, tyInt32)
of tyInt64: result = handleRange(c.c, f, a, tyInt, tyInt64)
of tyUInt: result = handleRange(c.c, f, a, tyUInt8, c.c.config.targetSizeUnsignedToKind)
of tyUInt8: result = handleRange(c.c, f, a, tyUInt8, tyUInt8)
of tyUInt16: result = handleRange(c.c, f, a, tyUInt8, tyUInt16)
of tyUInt32: result = handleRange(c.c, f, a, tyUInt8, tyUInt32)
of tyUInt64: result = handleRange(c.c, f, a, tyUInt, tyUInt64)
of tyFloat: result = handleFloatRange(f, a)
of tyFloat32: result = handleFloatRange(f, a)
of tyFloat64: result = handleFloatRange(f, a)
of tyFloat128: result = handleFloatRange(f, a)
of tyVar:
let flags = if isOutParam(f): flags + {trIsOutParam} else: flags
if aOrig.kind == f.kind and (isOutParam(aOrig) == isOutParam(f)):
result = typeRel(c, f.base, aOrig.base, flags)
else:
result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
subtypeCheck()
of tyLent:
if aOrig.kind == f.kind:
result = typeRel(c, f.base, aOrig.base, flags)
else:
result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
subtypeCheck()
of tyArray:
a = reduceToBase(a)
if a.kind == tyArray:
var fRange = f.indexType
var aRange = a.indexType
if fRange.kind in {tyGenericParam, tyAnything}:
var prev = idTableGet(c.bindings, fRange)
if prev == nil:
if typeRel(c, fRange, aRange) == isNone:
return isNone
put(c, fRange, a.indexType)
fRange = a
else:
fRange = prev
let ff = f[1].skipTypes({tyTypeDesc})
# This typeDesc rule is wrong, see bug #7331
let aa = a[1] #.skipTypes({tyTypeDesc})
if f.indexType.kind != tyGenericParam and aa.kind == tyEmpty:
result = isGeneric
else:
result = typeRel(c, ff, aa, flags)
if result < isGeneric:
if nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isSubtype
else:
return isNone
if fRange.rangeHasUnresolvedStatic:
if aRange.kind in {tyGenericParam} and aRange.reduceToBase() == aRange:
return
return inferStaticsInRange(c, fRange, a)
elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic:
return inferStaticsInRange(c, aRange, f)
elif result == isGeneric and concreteType(c, aa, ff) == nil:
return isNone
else:
if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange):
result = isNone
of tyOpenArray, tyVarargs:
# varargs[untyped] is special too but handled earlier. So we only need to
# handle varargs[typed]:
if f.kind == tyVarargs:
if tfVarargs in a.flags:
return typeRel(c, f.base, a.elementType, flags)
if f[0].kind == tyTyped: return
template matchArrayOrSeq(aBase: PType) =
let ff = f.base
let aa = aBase
let baseRel = typeRel(c, ff, aa, flags)
if baseRel >= isGeneric:
result = isConvertible
elif nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isConvertible
case a.kind
of tyOpenArray, tyVarargs:
result = typeRel(c, base(f), base(a), flags)
if result < isGeneric: result = isNone
of tyArray:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
return isSubtype
matchArrayOrSeq(a.elementType)
of tySequence:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
return isConvertible
matchArrayOrSeq(a.elementType)
of tyString:
if f.kind == tyOpenArray:
if f[0].kind == tyChar:
result = isConvertible
elif f[0].kind == tyGenericParam and a.len > 0 and
typeRel(c, base(f), base(a), flags) >= isGeneric:
result = isConvertible
else: discard
of tySequence, tyUncheckedArray:
if a.kind == f.kind:
if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
result = isSubtype
else:
let ff = f[0]
let aa = a.elementType
result = typeRel(c, ff, aa, flags)
if result < isGeneric:
if nimEnableCovariance and
trNoCovariance notin flags and
ff.kind == aa.kind and
isCovariantPtr(c, ff, aa):
result = isSubtype
else:
result = isNone
elif a.kind == tyNil:
result = isNone
of tyOrdinal:
if isOrdinalType(a):
var x = if a.kind == tyOrdinal: a.elementType else: a
if f[0].kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f[0], x, flags)
if result < isGeneric: result = isNone
elif a.kind == tyGenericParam:
result = isGeneric
of tyForward:
#internalError("forward type in typeRel()")
result = isNone
of tyNil:
skipOwned(a)
if a.kind == f.kind: result = isEqual
of tyTuple:
if a.kind == tyTuple: result = recordRel(c, f, a, flags)
of tyObject:
let effectiveArgType = if useTypeLoweringRuleInTypeClass:
a
else:
reduceToBase(a)
if effectiveArgType.kind == tyObject:
if sameObjectTypes(f, effectiveArgType):
c.inheritancePenalty = if tfFinal in f.flags: -1 else: 0
result = isEqual
# elif tfHasMeta in f.flags: result = recordRel(c, f, a)
elif trIsOutParam notin flags:
c.inheritancePenalty = isObjectSubtype(c, effectiveArgType, f, nil)
if c.inheritancePenalty > 0:
result = isSubtype
of tyDistinct:
a = a.skipTypes({tyOwned, tyGenericInst, tyRange})
if a.kind == tyDistinct:
if sameDistinctTypes(f, a): result = isEqual
#elif f.base.kind == tyAnything: result = isGeneric # issue 4435
elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
of tySet:
if a.kind == tySet:
if f[0].kind != tyGenericParam and a[0].kind == tyEmpty:
result = isSubtype
else:
result = typeRel(c, f[0], a[0], flags)
if result < isGeneric:
if result <= isConvertible:
result = isNone
elif tfIsConstructor notin a.flags:
# set constructors are a bit special...
result = isNone
of tyPtr, tyRef:
a = reduceToBase(a)
if a.kind == f.kind:
# ptr[R, T] can be passed to ptr[T], but not the other way round:
if a.len < f.len: return isNone
for i in 0..<f.len-1:
if typeRel(c, f[i], a[i], flags) == isNone: return isNone
result = typeRel(c, f.elementType, a.elementType, flags + {trNoCovariance})
subtypeCheck()
if result <= isIntConv: result = isNone
elif tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
elif a.kind == tyNil: result = f.allowsNil
else: discard
of tyProc:
skipOwned(a)
result = procTypeRel(c, f, a)
if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
of tyOwned:
case a.kind
of tyOwned:
result = typeRel(c, skipModifier(f), skipModifier(a), flags)
of tyNil: result = f.allowsNil
else: discard
of tyPointer:
skipOwned(a)
case a.kind
of tyPointer:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyProc:
if isDefined(c.c.config, "nimPreviewProcConversion"):
result = isNone
else:
if a.callConv != ccClosure: result = isConvertible
of tyPtr:
# 'pointer' is NOT compatible to regionized pointers
# so 'dealloc(regionPtr)' fails:
if a.len == 1: result = isConvertible
of tyCstring: result = isConvertible
else: discard
of tyString:
case a.kind
of tyString: result = isEqual
of tyNil: result = isNone
else: discard
of tyCstring:
# conversion from string to cstring is automatic:
case a.kind
of tyCstring:
if tfNotNil in f.flags and tfNotNil notin a.flags:
result = isNilConversion
else:
result = isEqual
of tyNil: result = f.allowsNil
of tyString: result = isConvertible
of tyPtr:
if isDefined(c.c.config, "nimPreviewCstringConversion"):
result = isNone
else:
if a.len == 1:
let pointsTo = a[0].skipTypes(abstractInst)
if pointsTo.kind == tyChar: result = isConvertible
elif pointsTo.kind == tyUncheckedArray and pointsTo[0].kind == tyChar:
result = isConvertible
elif pointsTo.kind == tyArray and firstOrd(nil, pointsTo[0]) == 0 and
skipTypes(pointsTo[0], {tyRange}).kind in {tyInt..tyInt64} and
pointsTo[1].kind == tyChar:
result = isConvertible
else: discard
of tyEmpty, tyVoid:
if a.kind == f.kind: result = isEqual
of tyAlias, tySink:
result = typeRel(c, skipModifier(f), a, flags)
of tyIterable:
if a.kind == tyIterable:
if f.len == 1:
result = typeRel(c, skipModifier(f), skipModifier(a), flags)
else:
# f.len = 3, for some reason
result = isGeneric
else:
result = isNone
of tyGenericInst:
var prev = idTableGet(c.bindings, f)
let origF = f
var f = if prev == nil: f else: prev
let deptha = a.genericAliasDepth()
let depthf = f.genericAliasDepth()
let skipBoth = deptha == depthf and (a.len > 0 and f.len > 0 and a.base != f.base)
let roota = if skipBoth or deptha > depthf: a.skipGenericAlias else: a
let rootf = if skipBoth or depthf > deptha: f.skipGenericAlias else: f
if a.kind == tyGenericInst:
if roota.base == rootf.base:
let nextFlags = flags + {trNoCovariance}
var hasCovariance = false
# YYYY
result = isEqual
for i in 1..<rootf.len-1:
let ff = rootf[i]
let aa = roota[i]
let res = typeRel(c, ff, aa, nextFlags)
if res != isNone and res != isEqual: result = isGeneric
if res notin {isEqual, isGeneric}:
if trNoCovariance notin flags and ff.kind == aa.kind:
let paramFlags = rootf.base[i-1].flags
hasCovariance =
if tfCovariant in paramFlags:
if tfWeakCovariant in paramFlags:
isCovariantPtr(c, ff, aa)
else:
ff.kind notin {tyRef, tyPtr} and res == isSubtype
else:
tfContravariant in paramFlags and
typeRel(c, aa, ff, flags) == isSubtype
if hasCovariance:
continue
return isNone
if prev == nil: put(c, f, a)
else:
let fKind = rootf.last.kind
if fKind in {tyAnd, tyOr}:
result = typeRel(c, last(f), a, flags)
if result != isNone: put(c, f, a)
return
var aAsObject = roota.last
if fKind in {tyRef, tyPtr}:
if aAsObject.kind == tyObject:
# bug #7600, tyObject cannot be passed
# as argument to tyRef/tyPtr
return isNone
elif aAsObject.kind == fKind:
aAsObject = aAsObject.base
if aAsObject.kind == tyObject and trIsOutParam notin flags:
let baseType = aAsObject.base
if baseType != nil:
inc c.inheritancePenalty, 1 + int(c.inheritancePenalty < 0)
let ret = typeRel(c, f, baseType, flags)
return if ret in {isEqual,isGeneric}: isSubtype else: ret
result = isNone
else:
assert last(origF) != nil
result = typeRel(c, last(origF), a, flags)
if result != isNone and a.kind != tyNil:
put(c, f, a)
of tyGenericBody:
considerPreviousT:
if a == f or a.kind == tyGenericInst and a.skipGenericAlias[0] == f:
bindingRet isGeneric
let ff = last(f)
if ff != nil:
result = typeRel(c, ff, a, flags)
of tyGenericInvocation:
var x = a.skipGenericAlias
if x.kind == tyGenericParam and x.len > 0:
x = x.last
let concpt = f[0].skipTypes({tyGenericBody})
var preventHack = concpt.kind == tyConcept
if x.kind == tyOwned and f[0].kind != tyOwned:
preventHack = true
x = x.last
# XXX: This is very hacky. It should be moved back into liftTypeParam
if x.kind in {tyGenericInst, tyArray} and
c.calleeSym != nil and
c.calleeSym.kind in {skProc, skFunc} and c.call != nil and not preventHack:
let inst = prepareMetatypeForSigmatch(c.c, c.bindings, c.call.info, f)
return typeRel(c, inst, a, flags)
if x.kind == tyGenericInvocation:
if f[0] == x[0]:
for i in 1..<f.len:
# Handle when checking against a generic that isn't fully instantiated
if i >= x.len: return
let tr = typeRel(c, f[i], x[i], flags)
if tr <= isSubtype: return
result = isGeneric
elif x.kind == tyGenericInst and f[0] == x[0] and
x.len - 1 == f.len:
for i in 1..<f.len:
if x[i].kind == tyGenericParam:
internalError(c.c.graph.config, "wrong instantiated type!")
elif typeRel(c, f[i], x[i], flags) <= isSubtype:
# Workaround for regression #4589
if f[i].kind != tyTypeDesc: return
result = isGeneric
elif x.kind == tyGenericInst and concpt.kind == tyConcept:
result = if concepts.conceptMatch(c.c, concpt, x, c.bindings, f): isGeneric
else: isNone
else:
let genericBody = f[0]
var askip = skippedNone
var fskip = skippedNone
let aobj = x.skipToObject(askip)
let fobj = genericBody.last.skipToObject(fskip)
result = typeRel(c, genericBody, x, flags)
if result != isNone:
# see tests/generics/tgeneric3.nim for an example that triggers this
# piece of code:
#
# proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
# proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
# Oldvalue: var D): ref TNode[T,D]
# var root = internalPut[int, int](nil, 312, 312, oldvalue)
# var it1 = internalFind(root, 312) # cannot instantiate: 'D'
#
# we steal the generic parameters from the tyGenericBody:
for i in 1..<f.len:
let x = idTableGet(c.bindings, genericBody[i-1])
if x == nil:
discard "maybe fine (for e.g. a==tyNil)"
elif x.kind in {tyGenericInvocation, tyGenericParam}:
internalError(c.c.graph.config, "wrong instantiated type!")
else:
let key = f[i]
let old = idTableGet(c.bindings, key)
if old == nil:
put(c, key, x)
elif typeRel(c, old, x, flags + {trDontBind}) == isNone:
return isNone
var depth = -1
if fobj != nil and aobj != nil and askip == fskip:
depth = isObjectSubtype(c, aobj, fobj, f)
if result == isNone:
# Here object inheriting from generic/specialized generic object
# crossing path with metatypes/aliases, so we need to separate them
# by checking sym.id
let genericSubtype = isGenericSubtype(c, x, f, depth, f)
if not (genericSubtype and aobj.sym.id != fobj.sym.id) and aOrig.kind != tyGenericBody:
depth = -1
if depth >= 0:
inc c.inheritancePenalty, depth + int(c.inheritancePenalty < 0)
# bug #4863: We still need to bind generic alias crap, so
# we cannot return immediately:
result = if depth == 0: isGeneric else: isSubtype
of tyAnd:
considerPreviousT:
result = isEqual
for branch in f.kids:
let x = typeRel(c, branch, aOrig, flags)
if x < isSubtype: return isNone
# 'and' implies minimum matching result:
if x < result: result = x
if result > isGeneric: result = isGeneric
bindingRet result
of tyOr:
considerPreviousT:
result = isNone
let oldInheritancePenalty = c.inheritancePenalty
var minInheritance = maxInheritancePenalty
for branch in f.kids:
c.inheritancePenalty = -1
let x = typeRel(c, branch, aOrig, flags)
if x >= result:
if c.inheritancePenalty > -1:
minInheritance = min(minInheritance, c.inheritancePenalty)
result = x
if result >= isIntConv:
if minInheritance < maxInheritancePenalty:
c.inheritancePenalty = oldInheritancePenalty + minInheritance
if result > isGeneric: result = isGeneric
bindingRet result
else:
result = isNone
of tyNot:
considerPreviousT:
if typeRel(c, f.elementType, aOrig, flags) != isNone:
return isNone
bindingRet isGeneric
of tyAnything:
considerPreviousT:
var concrete = concreteType(c, a)
if concrete != nil and doBind:
put(c, f, concrete)
return isGeneric
of tyBuiltInTypeClass:
considerPreviousT:
let target = f.genericHead
let targetKind = target.kind
var effectiveArgType = reduceToBase(a)
effectiveArgType = effectiveArgType.skipTypes({tyBuiltInTypeClass})
if targetKind == effectiveArgType.kind:
if effectiveArgType.isEmptyContainer:
return isNone
if targetKind == tyProc:
if target.flags * {tfIterator} != effectiveArgType.flags * {tfIterator}:
return isNone
if tfExplicitCallConv in target.flags and
target.callConv != effectiveArgType.callConv:
return isNone
if doBind: put(c, f, a)
return isGeneric
else:
return isNone
of tyUserTypeClassInst, tyUserTypeClass:
if f.isResolvedUserTypeClass:
result = typeRel(c, f.last, a, flags)
else:
considerPreviousT:
if aOrig == f: return isEqual
var matched = matchUserTypeClass(c, f, aOrig)
if matched != nil:
bindConcreteTypeToUserTypeClass(matched, a)
if doBind: put(c, f, matched)
result = isGeneric
elif a.len > 0 and a.last == f:
# Needed for checking `Y` == `Addable` in the following
#[
type
Addable = concept a, type A
a + a is A
MyType[T: Addable; Y: static T] = object
]#
result = isGeneric
else:
result = isNone
of tyConcept:
result = if concepts.conceptMatch(c.c, f, a, c.bindings, nil): isGeneric
else: isNone
of tyCompositeTypeClass:
considerPreviousT:
let roota = a.skipGenericAlias
let rootf = f.last.skipGenericAlias
if a.kind == tyGenericInst and roota.base == rootf.base:
for i in 1..<rootf.len-1:
let ff = rootf[i]
let aa = roota[i]
result = typeRel(c, ff, aa, flags)
if result == isNone: return
if ff.kind == tyRange and result != isEqual: return isNone
else:
result = typeRel(c, rootf.last, a, flags)
if result != isNone:
put(c, f, a)
result = isGeneric
of tyGenericParam:
let doBindGP = doBind or trBindGenericParam in flags
var x = idTableGet(c.bindings, f)
if x == nil:
if c.callee.kind == tyGenericBody and not c.typedescMatched:
# XXX: The fact that generic types currently use tyGenericParam for
# their parameters is really a misnomer. tyGenericParam means "match
# any value" and what we need is "match any type", which can be encoded
# by a tyTypeDesc params. Unfortunately, this requires more substantial
# changes in semtypinst and elsewhere.
if tfWildcard in a.flags:
result = isGeneric
elif a.kind == tyTypeDesc:
if f.len == 0:
result = isGeneric
else:
internalAssert c.c.graph.config, a.len > 0
c.typedescMatched = true
var aa = a
while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0:
aa = last(aa)
if aa.kind in {tyGenericParam} + tyTypeClasses:
# If the constraint is a genericParam or typeClass this isGeneric
return isGeneric
result = typeRel(c, f.base, aa, flags)
if result > isGeneric: result = isGeneric
elif c.isNoCall:
if doBindGP:
let concrete = concreteType(c, a, f)
if concrete == nil: return isNone
put(c, f, concrete)
result = isGeneric
else:
result = isNone
else:
# check if 'T' has a constraint as in 'proc p[T: Constraint](x: T)'
if f.len > 0 and f[0].kind != tyNone:
result = typeRel(c, f[0], a, flags + {trDontBind, trBindGenericParam})
if doBindGP and result notin {isNone, isGeneric}:
let concrete = concreteType(c, a, f)
if concrete == nil: return isNone
put(c, f, concrete)
if result in {isEqual, isSubtype}:
result = isGeneric
elif a.kind == tyTypeDesc:
# somewhat special typing rule, the following is illegal:
# proc p[T](x: T)
# p(int)
result = isNone
else:
result = isGeneric
if result == isGeneric:
var concrete = a
if tfWildcard in a.flags:
a.sym.transitionGenericParamToType()
a.flags.excl tfWildcard
elif doBind:
# careful: `trDontDont` (set by `checkGeneric`) is not always respected in this call graph.
# typRel having two different modes (binding and non-binding) can make things harder to
# reason about and maintain. Refactoring typeRel to not be responsible for setting, or
# at least validating, bindings can have multiple benefits. This is debatable. I'm not 100% sure.
# A design that allows a proper complexity analysis of types like `tyOr` would be ideal.
concrete = concreteType(c, a, f)
if concrete == nil:
return isNone
if doBindGP:
put(c, f, concrete)
elif result > isGeneric:
result = isGeneric
elif a.kind == tyEmpty:
result = isGeneric
elif x.kind == tyGenericParam:
result = isGeneric
else:
# This is the bound type - can't benifit from these tallies
let
inheritancePenaltyOld = c.inheritancePenalty
result = typeRel(c, x, a, flags) # check if it fits
c.inheritancePenalty = inheritancePenaltyOld
if result > isGeneric: result = isGeneric
of tyStatic:
let prev = idTableGet(c.bindings, f)
if prev == nil:
if aOrig.kind == tyStatic:
if c.c.inGenericContext > 0 and aOrig.n == nil and not c.isNoCall:
# don't match unresolved static value to static param to avoid
# faulty instantiations in calls in generic bodies
# but not for generic invocations as they only check constraints
result = isNone
elif f.base.kind notin {tyNone, tyGenericParam}:
result = typeRel(c, f.base, a, flags)
if result != isNone and f.n != nil:
var r = tryResolvingStaticExpr(c, f.n)
if r == nil: r = f.n
if not exprStructuralEquivalent(r, aOrig.n) and
not (aOrig.n != nil and aOrig.n.kind == nkIntLit and
inferStaticParam(c, r, aOrig.n.intVal)):
result = isNone
elif f.base.kind == tyGenericParam:
# Handling things like `type A[T; Y: static T] = object`
if f.base.len > 0: # There is a constraint, handle it
result = typeRel(c, f.base.last, a, flags)
else:
# No constraint
if tfGenericTypeParam in f.flags:
result = isGeneric
else:
# for things like `proc fun[T](a: static[T])`
result = typeRel(c, f.base, a, flags)
else:
result = isGeneric
if result != isNone: put(c, f, aOrig)
elif aOrig.n != nil and aOrig.n.typ != nil:
result = if f.base.kind != tyNone:
typeRel(c, f.last, aOrig.n.typ, flags)
else: isGeneric
if result != isNone:
var boundType = newTypeS(tyStatic, c.c, aOrig.n.typ)
boundType.n = aOrig.n
put(c, f, boundType)
else:
result = isNone
elif prev.kind == tyStatic:
if aOrig.kind == tyStatic:
result = typeRel(c, prev.last, a, flags)
if result != isNone and prev.n != nil:
if not exprStructuralEquivalent(prev.n, aOrig.n):
result = isNone
else: result = isNone
else:
# XXX endless recursion?
#result = typeRel(c, prev, aOrig, flags)
result = isNone
of tyInferred:
let prev = f.previouslyInferred
if prev != nil:
result = typeRel(c, prev, a, flags)
else:
result = typeRel(c, f.base, a, flags)
if result != isNone:
c.inferredTypes.add f
f.add a
of tyTypeDesc:
var prev = idTableGet(c.bindings, f)
if prev == nil:
# proc foo(T: typedesc, x: T)
# when `f` is an unresolved typedesc, `a` could be any
# type, so we should not perform this check earlier
if c.c.inGenericContext > 0 and a.containsUnresolvedType:
# generic type bodies can sometimes compile call expressions
# prevent unresolved generic parameters from being passed to procs as
# typedesc parameters
result = isNone
elif a.kind != tyTypeDesc:
if a.kind == tyGenericParam and tfWildcard in a.flags:
# TODO: prevent `a` from matching as a wildcard again
result = isGeneric
else:
result = isNone
elif f.base.kind == tyNone:
result = isGeneric
else:
result = typeRel(c, f.base, a.base, flags)
if result != isNone:
put(c, f, a)
else:
if tfUnresolved in f.flags:
result = typeRel(c, prev.base, a, flags)
elif a.kind == tyTypeDesc:
result = typeRel(c, prev.base, a.base, flags)
else:
result = isNone
of tyTyped:
if aOrig != nil:
put(c, f, aOrig)
result = isGeneric
of tyError:
result = isEqual
of tyFromExpr:
# fix the expression, so it contains the already instantiated types
if f.n == nil or f.n.kind == nkEmpty: return isGeneric
if c.c.inGenericContext > 0:
# need to delay until instantiation
# also prevent infinite recursion below
return isNone
inc c.c.inGenericContext # to generate tyFromExpr again if unresolved
# use prepareNode for consistency with other tyFromExpr in semtypinst:
let instantiated = prepareTypesInBody(c.c, c.bindings, f.n)
let reevaluated = c.c.semExpr(c.c, instantiated).typ
dec c.c.inGenericContext
case reevaluated.kind
of tyFromExpr:
# not resolved
result = isNone
of tyTypeDesc:
result = typeRel(c, reevaluated.base, a, flags)
of tyStatic:
result = typeRel(c, reevaluated.base, a, flags)
if result != isNone and reevaluated.n != nil:
if not exprStructuralEquivalent(aOrig.n, reevaluated.n):
result = isNone
else:
# bug #14136: other types are just like 'tyStatic' here:
result = typeRel(c, reevaluated, a, flags)
if result != isNone and reevaluated.n != nil:
if not exprStructuralEquivalent(aOrig.n, reevaluated.n):
result = isNone
of tyNone:
if a.kind == tyNone: result = isEqual
else:
internalError c.c.graph.config, " unknown type kind " & $f.kind
when false:
var nowDebug = false
var dbgCount = 0
proc typeRel(c: var TCandidate, f, aOrig: PType,
flags: TTypeRelFlags = {}): TTypeRelation =
if nowDebug:
echo f, " <- ", aOrig
inc dbgCount
if dbgCount == 2:
writeStackTrace()
result = typeRelImpl(c, f, aOrig, flags)
if nowDebug:
echo f, " <- ", aOrig, " res ", result
proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
var m = newCandidate(c, f)
result = typeRel(m, f, a)
proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
f: PType): PType =
result = idTableGet(m.bindings, f)
if result == nil:
result = generateTypeInstance(c, m.bindings, arg, f)
if result == nil:
internalError(c.graph.config, arg.info, "getInstantiatedType")
result = errorType(c)
proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
c: PContext): PNode =
result = newNodeI(kind, arg.info)
if containsGenericType(f):
if not m.matchedErrorType:
result.typ = getInstantiatedType(c, arg, m, f).skipTypes({tySink})
else:
result.typ = errorType(c)
else:
result.typ = f.skipTypes({tySink})
# keep varness
if arg.typ != nil and arg.typ.kind == tyVar:
result.typ = toVar(result.typ, tyVar, c.idgen)
else:
result.typ = result.typ.skipTypes({tyVar})
if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv")
result.add c.graph.emptyNode
if arg.typ != nil and arg.typ.kind == tyLent:
let a = newNodeIT(nkHiddenDeref, arg.info, arg.typ.elementType)
a.add arg
result.add a
else:
result.add arg
proc isLValue(c: PContext; n: PNode, isOutParam = false): bool {.inline.} =
let aa = isAssignable(nil, n)
case aa
of arLValue, arLocalLValue, arStrange:
result = true
of arDiscriminant:
result = c.inUncheckedAssignSection > 0
of arAddressableConst:
let sym = getRoot(n)
result = strictDefs in c.features and sym != nil and sym.kind == skLet and isOutParam
else:
result = false
proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
result = nil
for i in 0..<c.converters.len:
var src = c.converters[i].typ.firstParamType
var dest = c.converters[i].typ.returnType
# for generic type converters we need to check 'src <- a' before
# 'f <- dest' in order to not break the unification:
# see tests/tgenericconverter:
let srca = typeRel(m, src, a)
if srca notin {isEqual, isGeneric, isSubtype}: continue
# What's done below matches the logic in ``matchesAux``
let constraint = c.converters[i].typ.n[1].sym.constraint
if not constraint.isNil and not matchNodeKinds(constraint, arg):
continue
if src.kind in {tyVar, tyLent} and not isLValue(c, arg):
continue
let destIsGeneric = containsGenericType(dest)
if destIsGeneric:
dest = generateTypeInstance(c, m.bindings, arg, dest)
let fdest = typeRel(m, f, dest)
if fdest in {isEqual, isGeneric} and not (dest.kind == tyLent and f.kind in {tyVar}):
markUsed(c, arg.info, c.converters[i])
var s = newSymNode(c.converters[i])
s.typ = c.converters[i].typ
s.info = arg.info
result = newNodeIT(nkHiddenCallConv, arg.info, dest)
result.add s
# We build the call expression by ourselves in order to avoid passing this
# expression trough the semantic check phase once again so let's make sure
# it is correct
var param: PNode = nil
if srca == isSubtype:
param = implicitConv(nkHiddenSubConv, src, copyTree(arg), m, c)
elif src.kind in {tyVar}:
# Analyse the converter return type.
param = newNodeIT(nkHiddenAddr, arg.info, s.typ.firstParamType)
param.add copyTree(arg)
else:
param = copyTree(arg)
result.add param
if dest.kind in {tyVar, tyLent}:
dest.flags.incl tfVarIsPtr
result = newDeref(result)
inc(m.convMatches)
if not m.genericConverter:
m.genericConverter = srca == isGeneric or destIsGeneric
return result
proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
arg: PNode): PNode =
# arg.typ can be nil in 'suggest':
if isNil(arg.typ): return nil
# sem'checking for 'echo' needs to be re-entrant:
# XXX we will revisit this issue after 0.10.2 is released
if f == arg.typ and arg.kind == nkHiddenStdConv: return arg
var call = newNodeI(nkCall, arg.info)
call.add(f.n.copyTree)
call.add(arg.copyTree)
# XXX: This would be much nicer if we don't use `semTryExpr` and
# instead we directly search for overloads with `resolveOverloads`:
result = c.semTryExpr(c, call, {efNoSem2Check})
if result != nil:
if result.typ == nil: return nil
# bug #13378, ensure we produce a real generic instantiation:
result = c.semExpr(c, call, {efNoSem2Check})
# resulting type must be consistent with the other arguments:
var r = typeRel(m, f[0], result.typ)
if r < isGeneric: return nil
if result.kind == nkCall: result.transitionSonsKind(nkHiddenCallConv)
inc(m.convMatches)
if r == isGeneric:
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
case r
of isConvertible, isIntConv: inc(m.convMatches, convMatch)
of isSubtype, isSubrange: inc(m.subtypeMatches)
of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
of isFromIntLit: inc(m.intConvMatches, 256)
of isInferredConvertible:
inc(m.convMatches)
of isEqual: inc(m.exactMatches)
of isNone: discard
template matchesVoidProc(t: PType): bool =
(t.kind == tyProc and t.len == 1 and t.returnType == nil) or
(t.kind == tyBuiltInTypeClass and t.elementType.kind == tyProc)
proc paramTypesMatchAux(m: var TCandidate, f, a: PType,
argSemantized, argOrig: PNode): PNode =
result = nil
var
fMaybeStatic = f.skipTypes({tyDistinct})
arg = argSemantized
a = a
c = m.c
if tfHasStatic in fMaybeStatic.flags:
# XXX: When implicit statics are the default
# this will be done earlier - we just have to
# make sure that static types enter here
# Zahary: weaken tyGenericParam and call it tyGenericPlaceholder
# and finally start using tyTypedesc for generic types properly.
# Araq: This would only shift the problems around, in 'proc p[T](x: T)'
# the T is NOT a typedesc.
if a.kind == tyGenericParam and tfWildcard in a.flags:
a.assignType(f)
# put(m.bindings, f, a)
return argSemantized
if a.kind == tyStatic:
if m.callee.kind == tyGenericBody and
a.n == nil and
tfGenericTypeParam notin a.flags:
return newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
elif a.kind == tyFromExpr and c.inGenericContext > 0:
# don't try to evaluate
discard
elif arg.kind != nkEmpty:
var evaluated = c.semTryConstExpr(c, arg)
if evaluated != nil:
# Don't build the type in-place because `evaluated` and `arg` may point
# to the same object and we'd end up creating recursive types (#9255)
let typ = newTypeS(tyStatic, c, son = evaluated.typ)
typ.n = evaluated
arg = copyTree(arg) # fix #12864
arg.typ = typ
a = typ
else:
if m.callee.kind == tyGenericBody:
if f.kind == tyStatic and typeRel(m, f.base, a) != isNone:
result = makeStaticExpr(m.c, arg)
result.typ.flags.incl tfUnresolved
result.typ.n = arg
return
let oldInheritancePenalty = m.inheritancePenalty
var r = typeRel(m, f, a)
# This special typing rule for macros and templates is not documented
# anywhere and breaks symmetry. It's hard to get rid of though, my
# custom seqs example fails to compile without this:
if r != isNone and m.calleeSym != nil and
m.calleeSym.kind in {skMacro, skTemplate}:
# XXX: duplicating this is ugly, but we cannot (!) move this
# directly into typeRel using return-like templates
incMatches(m, r)
if f.kind == tyTyped:
return arg
elif f.kind == tyTypeDesc:
return arg
elif f.kind == tyStatic and arg.typ.n != nil:
return arg.typ.n
else:
return argSemantized # argOrig
block instantiateGenericRoutine:
# In the case where the matched value is a generic proc, we need to
# fully instantiate it and then rerun typeRel to make sure it matches.
# instantiationCounter is for safety to avoid any infinite loop,
# I don't have any example when it is needed.
# lastBindingCount is used to check whether m.bindings remains the same,
# because in that case there is no point in continuing.
var instantiationCounter = 0
var lastBindingCount = -1
while r in {isBothMetaConvertible, isInferred, isInferredConvertible} and
lastBindingCount != m.bindings.len and
instantiationCounter < 100:
lastBindingCount = m.bindings.len
inc(instantiationCounter)
if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds:
result = c.semInferredLambda(c, m.bindings, arg)
elif arg.kind != nkSym:
return nil
elif arg.sym.kind in {skMacro, skTemplate}:
return nil
else:
if arg.sym.ast == nil:
return nil
let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
result = newSymNode(inferred, arg.info)
arg = result
r = typeRel(m, f, arg.typ)
case r
of isConvertible:
if f.skipTypes({tyRange}).kind in {tyInt, tyUInt}:
inc(m.convMatches)
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isIntConv:
# I'm too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
if f.skipTypes({tyRange}).kind notin {tyInt, tyUInt}:
inc(m.intConvMatches)
inc(m.intConvMatches)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isSubtype:
inc(m.subtypeMatches)
if f.kind == tyTypeDesc:
result = arg
else:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isSubrange:
inc(m.subtypeMatches)
if f.kind in {tyVar}:
result = arg
else:
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isInferred:
# result should be set in above while loop:
assert result != nil
inc(m.genericMatches)
of isInferredConvertible:
# result should be set in above while loop:
assert result != nil
inc(m.convMatches)
result = implicitConv(nkHiddenStdConv, f, result, m, c)
of isGeneric:
inc(m.genericMatches)
if arg.typ == nil:
result = arg
elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple or cmpInheritancePenalty(oldInheritancePenalty, m.inheritancePenalty) > 0:
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
elif arg.typ.isEmptyContainer:
result = arg.copyTree
result.typ = getInstantiatedType(c, arg, m, f)
else:
result = arg
of isBothMetaConvertible:
# result should be set in above while loop:
assert result != nil
inc(m.convMatches)
result = arg
of isFromIntLit:
# too lazy to introduce another ``*matches`` field, so we conflate
# ``isIntConv`` and ``isIntLit`` here:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f, arg, m, c)
of isEqual:
inc(m.exactMatches)
result = arg
let ff = skipTypes(f, abstractVar-{tyTypeDesc})
if ff.kind == tyTuple or
(arg.typ != nil and skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple):
result = implicitConv(nkHiddenSubConv, f, arg, m, c)
of isNone:
# do not do this in ``typeRel`` as it then can't infer T in ``ref T``:
if a.kind == tyFromExpr: return nil
elif a.kind == tyError:
inc(m.genericMatches)
m.matchedErrorType = true
return arg
elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList:
# lift do blocks without params to lambdas
# now deprecated
message(c.config, argOrig.info, warnStmtListLambda)
let p = c.graph
let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig,
params = nkFormalParams.newTree(p.emptyNode), name = p.emptyNode, pattern = p.emptyNode,
genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {})
if f.kind == tyBuiltInTypeClass:
inc m.genericMatches
put(m, f, lifted.typ)
inc m.convMatches
return implicitConv(nkHiddenStdConv, f, lifted, m, c)
result = userConvMatch(c, m, f, a, arg)
# check for a base type match, which supports varargs[T] without []
# constructor in a call:
if result == nil and f.kind == tyVarargs:
if f.n != nil:
# Forward to the varargs converter
result = localConvMatch(c, m, f, a, arg)
elif f[0].kind == tyTyped:
inc m.genericMatches
result = arg
else:
r = typeRel(m, base(f), a)
case r
of isGeneric:
inc(m.convMatches)
result = copyTree(arg)
result.typ = getInstantiatedType(c, arg, m, base(f))
m.baseTypeMatch = true
of isFromIntLit:
inc(m.intConvMatches, 256)
result = implicitConv(nkHiddenStdConv, f[0], arg, m, c)
m.baseTypeMatch = true
of isEqual:
inc(m.convMatches)
result = copyTree(arg)
m.baseTypeMatch = true
of isSubtype: # bug #4799, varargs accepting subtype relation object
inc(m.subtypeMatches)
if base(f).kind == tyTypeDesc:
result = arg
else:
result = implicitConv(nkHiddenSubConv, base(f), arg, m, c)
m.baseTypeMatch = true
else:
result = userConvMatch(c, m, base(f), a, arg)
if result != nil: m.baseTypeMatch = true
proc staticAwareTypeRel(m: var TCandidate, f: PType, arg: var PNode): TTypeRelation =
if f.kind == tyStatic and f.base.kind == tyProc:
# The ast of the type does not point to the symbol.
# Without this we will never resolve a `static proc` with overloads
let copiedNode = copyNode(arg)
copiedNode.typ = exactReplica(copiedNode.typ)
copiedNode.typ.n = arg
arg = copiedNode
typeRel(m, f, arg.typ)
proc paramTypesMatch*(m: var TCandidate, f, a: PType,
arg, argOrig: PNode): PNode =
if arg == nil or arg.kind notin nkSymChoices:
result = paramTypesMatchAux(m, f, a, arg, argOrig)
else:
# symbol kinds that don't participate in symchoice type disambiguation:
let matchSet = {low(TSymKind)..high(TSymKind)} - {skModule, skPackage}
var best = -1
result = arg
var actingF = f
if f.kind == tyVarargs:
if m.calleeSym.kind in {skTemplate, skMacro}:
actingF = f[0]
if actingF.kind in {tyTyped, tyUntyped}:
var
bestScope = -1
counts = 0
for i in 0..<arg.len:
if arg[i].sym.kind in matchSet:
let thisScope = cmpScopes(m.c, arg[i].sym)
if thisScope > bestScope:
best = i
bestScope = thisScope
counts = 0
elif thisScope == bestScope:
inc counts
if best == -1:
result = nil
elif counts > 0:
m.genericMatches = 1
best = -1
else:
# CAUTION: The order depends on the used hashing scheme. Thus it is
# incorrect to simply use the first fitting match. However, to implement
# this correctly is inefficient. We have to copy `m` here to be able to
# roll back the side effects of the unification algorithm.
let c = m.c
var
x = newCandidate(c, m.callee) # potential "best"
y = newCandidate(c, m.callee) # potential competitor with x
z = newCandidate(c, m.callee) # buffer for copies of m
x.calleeSym = m.calleeSym
y.calleeSym = m.calleeSym
z.calleeSym = m.calleeSym
for i in 0..<arg.len:
if arg[i].sym.kind in matchSet:
copyCandidate(z, m)
z.callee = arg[i].typ
if arg[i].sym.kind == skType and z.callee.kind != tyTypeDesc:
# creating the symchoice with the type sym having typedesc type
# breaks a lot of stuff, so we make the typedesc type here
# mirrored from `newSymNodeTypeDesc`
z.callee = newType(tyTypeDesc, c.idgen, arg[i].sym.owner)
z.callee.addSonSkipIntLit(arg[i].sym.typ, c.idgen)
if tfUnresolved in z.callee.flags: continue
z.calleeSym = arg[i].sym
z.calleeScope = cmpScopes(m.c, arg[i].sym)
# XXX this is still all wrong: (T, T) should be 2 generic matches
# and (int, int) 2 exact matches, etc. Essentially you cannot call
# typeRel here and expect things to work!
let r = staticAwareTypeRel(z, f, arg[i])
incMatches(z, r, 2)
if r != isNone:
z.state = csMatch
case x.state
of csEmpty, csNoMatch:
x = z
best = i
of csMatch:
let cmp = cmpCandidates(x, z, isFormal=false)
if cmp < 0:
best = i
x = z
elif cmp == 0:
y = z # z is as good as x
if x.state == csEmpty:
result = nil
elif y.state == csMatch and cmpCandidates(x, y, isFormal=false) == 0:
if x.state != csMatch:
internalError(m.c.graph.config, arg.info, "x.state is not csMatch")
result = nil
if best > -1 and result != nil:
# only one valid interpretation found:
markUsed(m.c, arg.info, arg[best].sym)
onUse(arg.info, arg[best].sym)
result = paramTypesMatchAux(m, f, arg[best].typ, arg[best], argOrig)
when false:
if m.calleeSym != nil and m.calleeSym.name.s == "[]":
echo m.c.config $ arg.info, " for ", m.calleeSym.name.s, " ", m.c.config $ m.calleeSym.info
writeMatches(m)
proc setSon(father: PNode, at: int, son: PNode) =
let oldLen = father.len
if oldLen <= at:
setLen(father.sons, at + 1)
father[at] = son
# insert potential 'void' parameters:
#for i in oldLen..<at:
# father[i] = newNodeIT(nkEmpty, son.info, getSysType(tyVoid))
# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
if formal.kind == tyUntyped and formal.len != 1:
# {tyTypeDesc, tyUntyped, tyTyped, tyError}:
# a.typ == nil is valid
result = a
elif a.typ.isNil:
if formal.kind == tyIterable:
let flags = {efDetermineType, efAllowStmt, efWantIterator, efWantIterable}
result = c.semOperand(c, a, flags)
else:
# XXX This is unsound! 'formal' can differ from overloaded routine to
# overloaded routine!
let flags = {efDetermineType, efAllowStmt}
#if formal.kind == tyIterable: {efDetermineType, efWantIterator}
#else: {efDetermineType, efAllowStmt}
#elif formal.kind == tyTyped: {efDetermineType, efWantStmt}
#else: {efDetermineType}
result = c.semOperand(c, a, flags)
else:
result = a
considerGenSyms(c, result)
if result.kind != nkHiddenDeref and result.typ.kind in {tyVar, tyLent} and c.matchedConcept == nil:
result = newDeref(result)
proc prepareOperand(c: PContext; a: PNode): PNode =
if a.typ.isNil:
result = c.semOperand(c, a, {efDetermineType})
else:
result = a
considerGenSyms(c, result)
proc prepareNamedParam(a: PNode; c: PContext) =
if a[0].kind != nkIdent:
var info = a[0].info
a[0] = newIdentNode(considerQuotedIdent(c, a[0]), info)
proc arrayConstr(c: PContext, n: PNode): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, 0, n.info))
addSonSkipIntLit(result, skipTypes(n.typ,
{tyVar, tyLent, tyOrdinal}), c.idgen)
proc arrayConstr(c: PContext, info: TLineInfo): PType =
result = newTypeS(tyArray, c)
rawAddSon(result, makeRangeType(c, 0, -1, info))
rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!
proc incrIndexType(t: PType) =
assert t.kind == tyArray
inc t.indexType.n[1].intVal
template isVarargsUntyped(x): untyped =
x.kind == tyVarargs and x[0].kind == tyUntyped
template isVarargsTyped(x): untyped =
x.kind == tyVarargs and x[0].kind == tyTyped
proc findFirstArgBlock(m: var TCandidate, n: PNode): int =
# see https://github.com/nim-lang/RFCs/issues/405
result = int.high
for a2 in countdown(n.len-1, 0):
# checking `nfBlockArg in n[a2].flags` wouldn't work inside templates
if n[a2].kind != nkStmtList: break
let formalLast = m.callee.n[m.callee.n.len - (n.len - a2)]
# parameter has to occupy space (no default value, not void or varargs)
if formalLast.kind == nkSym and formalLast.sym.ast == nil and
formalLast.sym.typ.kind notin {tyVoid, tyVarargs}:
result = a2
else: break
proc matchesAux(c: PContext, n, nOrig: PNode, m: var TCandidate, marker: var IntSet) =
template noMatch() =
c.mergeShadowScope #merge so that we don't have to resem for later overloads
m.state = csNoMatch
m.firstMismatch.arg = a
m.firstMismatch.formal = formal
return
template checkConstraint(n: untyped) {.dirty.} =
if not formal.constraint.isNil and sfCodegenDecl notin formal.flags:
if matchNodeKinds(formal.constraint, n):
# better match over other routines with no such restriction:
inc(m.genericMatches, 100)
else:
noMatch()
if formal.typ.kind in {tyVar}:
let argConverter = if arg.kind == nkHiddenDeref: arg[0] else: arg
if argConverter.kind == nkHiddenCallConv:
if argConverter.typ.kind notin {tyVar}:
m.firstMismatch.kind = kVarNeeded
noMatch()
elif not (isLValue(c, n, isOutParam(formal.typ))):
m.firstMismatch.kind = kVarNeeded
noMatch()
m.state = csMatch # until proven otherwise
m.firstMismatch = MismatchInfo()
m.call = newNodeIT(n.kind, n.info, m.callee.base)
m.call.add n[0]
var
a = 1 # iterates over the actual given arguments
f = if m.callee.kind != tyGenericBody: 1
else: 0 # iterates over formal parameters
arg: PNode = nil # current prepared argument
formalLen = m.callee.n.len
formal = if formalLen > 1: m.callee.n[1].sym else: nil # current routine parameter
container: PNode = nil # constructed container
let firstArgBlock = findFirstArgBlock(m, n)
while a < n.len:
c.openShadowScope
if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped:
formal = m.callee.n[f].sym
incl(marker, formal.position)
if n[a].kind == nkHiddenStdConv:
doAssert n[a][0].kind == nkEmpty and
n[a][1].kind in {nkBracket, nkArgList}
# Steal the container and pass it along
setSon(m.call, formal.position + 1, n[a][1])
else:
if container.isNil:
container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
container.add n[a]
elif n[a].kind == nkExprEqExpr:
# named param
m.firstMismatch.kind = kUnknownNamedParam
# check if m.callee has such a param:
prepareNamedParam(n[a], c)
if n[a][0].kind != nkIdent:
localError(c.config, n[a].info, "named parameter has to be an identifier")
noMatch()
formal = getNamedParamFromList(m.callee.n, n[a][0].ident)
if formal == nil:
# no error message!
noMatch()
if containsOrIncl(marker, formal.position):
m.firstMismatch.kind = kAlreadyGiven
# already in namedParams, so no match
# we used to produce 'errCannotBindXTwice' here but see
# bug #3836 of why that is not sound (other overload with
# different parameter names could match later on):
when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
noMatch()
m.baseTypeMatch = false
m.typedescMatched = false
n[a][1] = prepareOperand(c, formal.typ, n[a][1])
n[a].typ = n[a][1].typ
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a][1], n[a][1])
m.firstMismatch.kind = kTypeMismatch
if arg == nil:
noMatch()
checkConstraint(n[a][1])
if m.baseTypeMatch:
#assert(container == nil)
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
container.add arg
setSon(m.call, formal.position + 1, container)
if f != formalLen - 1: container = nil
else:
setSon(m.call, formal.position + 1, arg)
inc f
else:
# unnamed param
if f >= formalLen:
# too many arguments?
if tfVarargs in m.callee.flags:
# is ok... but don't increment any counters...
# we have no formal here to snoop at:
n[a] = prepareOperand(c, n[a])
if skipTypes(n[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
m.call.add implicitConv(nkHiddenStdConv,
getSysType(c.graph, n[a].info, tyCstring),
copyTree(n[a]), m, c)
else:
m.call.add copyTree(n[a])
elif formal != nil and formal.typ.kind == tyVarargs:
m.firstMismatch.kind = kTypeMismatch
# beware of the side-effects in 'prepareOperand'! So only do it for
# varargs matching. See tests/metatype/tstatic_overloading.
m.baseTypeMatch = false
m.typedescMatched = false
incl(marker, formal.position)
n[a] = prepareOperand(c, formal.typ, n[a])
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a], nOrig[a])
if arg != nil and m.baseTypeMatch and container != nil:
container.add arg
incrIndexType(container.typ)
checkConstraint(n[a])
else:
noMatch()
else:
m.firstMismatch.kind = kExtraArg
noMatch()
else:
if m.callee.n[f].kind != nkSym:
internalError(c.config, n[a].info, "matches")
noMatch()
if flexibleOptionalParams in c.features and a >= firstArgBlock:
f = max(f, m.callee.n.len - (n.len - a))
formal = m.callee.n[f].sym
m.firstMismatch.kind = kTypeMismatch
if containsOrIncl(marker, formal.position) and container.isNil:
m.firstMismatch.kind = kPositionalAlreadyGiven
# positional param already in namedParams: (see above remark)
when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
noMatch()
if formal.typ.isVarargsUntyped:
if container.isNil:
container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, container)
else:
incrIndexType(container.typ)
container.add n[a]
else:
m.baseTypeMatch = false
m.typedescMatched = false
n[a] = prepareOperand(c, formal.typ, n[a])
arg = paramTypesMatch(m, formal.typ, n[a].typ,
n[a], nOrig[a])
if arg == nil:
noMatch()
if formal.typ.isVarargsTyped and m.calleeSym.kind in {skTemplate, skMacro}:
if container.isNil:
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
else:
incrIndexType(container.typ)
container.add n[a]
f = max(f, formalLen - n.len + a + 1)
elif m.baseTypeMatch:
assert formal.typ.kind == tyVarargs
#assert(container == nil)
if container.isNil:
container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
container.typ.flags.incl tfVarargs
else:
incrIndexType(container.typ)
container.add arg
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
#if f != formalLen - 1: container = nil
# pick the formal from the end, so that 'x, y, varargs, z' works:
f = max(f, formalLen - n.len + a + 1)
elif formal.typ.kind != tyVarargs or container == nil:
setSon(m.call, formal.position + 1, arg)
inc f
container = nil
else:
# we end up here if the argument can be converted into the varargs
# formal (e.g. seq[T] -> varargs[T]) but we have already instantiated
# a container
#assert arg.kind == nkHiddenStdConv # for 'nim check'
# this assertion can be off
localError(c.config, n[a].info, "cannot convert $1 to $2" % [
typeToString(n[a].typ), typeToString(formal.typ) ])
noMatch()
checkConstraint(n[a])
if m.state == csMatch and not (m.calleeSym != nil and m.calleeSym.kind in {skTemplate, skMacro}):
c.mergeShadowScope
else:
c.closeShadowScope
inc a
# for some edge cases (see tdont_return_unowned_from_owned test case)
m.firstMismatch.arg = a
m.firstMismatch.formal = formal
proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
# for 'suggest' support:
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
if m.magic in {mArrGet, mArrPut}:
m.state = csMatch
m.call = n
# Note the following doesn't work as it would produce ambiguities.
# Instead we patch system.nim, see bug #8049.
when false:
inc m.genericMatches
inc m.exactMatches
return
# initCandidate may have given csNoMatch if generic params didn't match:
if m.state == csNoMatch: return
var marker = initIntSet()
matchesAux(c, n, nOrig, m, marker)
if m.state == csNoMatch: return
# check that every formal parameter got a value:
for f in 1..<m.callee.n.len:
let formal = m.callee.n[f].sym
if not containsOrIncl(marker, formal.position):
if formal.ast == nil:
if formal.typ.kind == tyVarargs:
# For consistency with what happens in `matchesAux` select the
# container node kind accordingly
let cnKind = if formal.typ.isVarargsUntyped: nkArgList else: nkBracket
var container = newNodeIT(cnKind, n.info, arrayConstr(c, n.info))
setSon(m.call, formal.position + 1,
implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
else:
# no default value
m.state = csNoMatch
m.firstMismatch.kind = kMissingParam
m.firstMismatch.formal = formal
break
else:
# mirrored with updateDefaultParams:
if formal.ast.kind == nkEmpty:
# The default param value is set to empty in `instantiateProcType`
# when the type of the default expression doesn't match the type
# of the instantiated proc param:
pushInfoContext(c.config, m.call.info,
if m.calleeSym != nil: m.calleeSym.detailedInfo else: "")
typeMismatch(c.config, formal.ast.info, formal.typ, formal.ast.typ, formal.ast)
popInfoContext(c.config)
formal.ast.typ = errorType(c)
if nfDefaultRefsParam in formal.ast.flags:
m.call.flags.incl nfDefaultRefsParam
var defaultValue = copyTree(formal.ast)
if defaultValue.kind == nkNilLit:
defaultValue = implicitConv(nkHiddenStdConv, formal.typ, defaultValue, m, c)
# proc foo(x: T = 0.0)
# foo()
if {tfImplicitTypeParam, tfGenericTypeParam} * formal.typ.flags != {}:
let existing = idTableGet(m.bindings, formal.typ)
if existing == nil or existing.kind == tyTypeDesc:
# see bug #11600:
put(m, formal.typ, defaultValue.typ)
defaultValue.flags.incl nfDefaultParam
setSon(m.call, formal.position + 1, defaultValue)
# forget all inferred types if the overload matching failed
if m.state == csNoMatch:
for t in m.inferredTypes:
if t.len > 1: t.newSons 1
proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool =
var m = newCandidate(c, f)
let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil)
#instantiateGenericConverters(c, res, m)
# XXX this is used by patterns.nim too; I think it's better to not
# instantiate generic converters for that
if not fromHlo:
res != nil
else:
# pattern templates do not allow for conversions except from int literal
res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256]
proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
op: TTypeAttachedOp; col: int): PSym =
var m = newCandidate(c, dc.typ)
if col >= dc.typ.len:
localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
return nil
var f = dc.typ[col]
if op == attachedDeepCopy:
if f.kind in {tyRef, tyPtr}: f = f.elementType
else:
if f.kind in {tyVar}: f = f.elementType
if typeRel(m, f, t) == isNone:
result = nil
localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
else:
result = c.semGenerateInstance(c, dc, m.bindings, info)
if op == attachedDeepCopy:
assert sfFromGeneric in result.flags
include suggest
when not declared(tests):
template tests(s: untyped) = discard
tests:
var dummyOwner = newSym(skModule, getIdent("test_module"), nil, unknownLineInfo)
proc `|` (t1, t2: PType): PType =
result = newType(tyOr, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `&` (t1, t2: PType): PType =
result = newType(tyAnd, dummyOwner)
result.rawAddSon(t1)
result.rawAddSon(t2)
proc `!` (t: PType): PType =
result = newType(tyNot, dummyOwner)
result.rawAddSon(t)
proc seq(t: PType): PType =
result = newType(tySequence, dummyOwner)
result.rawAddSon(t)
proc array(x: int, t: PType): PType =
result = newType(tyArray, dummyOwner)
var n = newNodeI(nkRange, unknownLineInfo)
n.add newIntNode(nkIntLit, 0)
n.add newIntNode(nkIntLit, x)
let range = newType(tyRange, dummyOwner)
result.rawAddSon(range)
result.rawAddSon(t)
suite "type classes":
let
int = newType(tyInt, dummyOwner)
float = newType(tyFloat, dummyOwner)
string = newType(tyString, dummyOwner)
ordinal = newType(tyOrdinal, dummyOwner)
any = newType(tyAnything, dummyOwner)
number = int | float
var TFoo = newType(tyObject, dummyOwner)
TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, unknownLineInfo)
var T1 = newType(tyGenericParam, dummyOwner)
T1.sym = newSym(skType, getIdent"T1", dummyOwner, unknownLineInfo)
T1.sym.position = 0
var T2 = newType(tyGenericParam, dummyOwner)
T2.sym = newSym(skType, getIdent"T2", dummyOwner, unknownLineInfo)
T2.sym.position = 1
setup:
var c = newCandidate(nil, nil)
template yes(x, y) =
test astToStr(x) & " is " & astToStr(y):
check typeRel(c, y, x) == isGeneric
template no(x, y) =
test astToStr(x) & " is not " & astToStr(y):
check typeRel(c, y, x) == isNone
yes seq(any), array(10, int) | seq(any)
# Sure, seq[any] is directly included
yes seq(int), seq(any)
yes seq(int), seq(number)
# Sure, the int sequence is certainly
# part of the number sequences (and all sequences)
no seq(any), seq(float)
# Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])
yes seq(int|string), seq(any)
# Sure
yes seq(int&string), seq(any)
# Again
yes seq(int&string), seq(int)
# A bit more complicated
# seq[int&string] is not a real type, but it's analogous to
# seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]
no seq(int|string), seq(int|float)
# Nope, seq[string] is not included in not included in
# the seq[int|float] set
no seq(!(int|string)), seq(string)
# A sequence that is neither seq[int] or seq[string]
# is obviously not seq[string]
no seq(!int), seq(number)
# Now your head should start to hurt a bit
# A sequence that is not seq[int] is not necessarily a number sequence
# it could well be seq[string] for example
yes seq(!(int|string)), seq(!string)
# all sequnece types besides seq[int] and seq[string]
# are subset of all sequence types that are not seq[string]
no seq(!(int|string)), seq(!(string|TFoo))
# Nope, seq[TFoo] is included in the first set, but not in the second
no seq(!string), seq(!number)
# Nope, seq[int] in included in the first set, but not in the second
yes seq(!number), seq(any)
yes seq(!int), seq(any)
no seq(any), seq(!any)
no seq(!int), seq(!any)
yes int, ordinal
no string, ordinal
|