File: types.nim

package info (click to toggle)
nim 2.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,911,644 kB
  • sloc: sh: 24,603; ansic: 1,761; python: 1,492; makefile: 1,013; sql: 298; asm: 141; xml: 13
file content (1937 lines) | stat: -rw-r--r-- 68,711 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module contains routines for accessing and iterating over types

import
  ast, astalgo, trees, msgs, platform, renderer, options,
  lineinfos, int128, modulegraphs, astmsgs, wordrecg

import std/[intsets, strutils]

when defined(nimPreviewSlimSystem):
  import std/[assertions, formatfloat]

type
  TPreferedDesc* = enum
    preferName, # default
    preferDesc, # probably should become what preferResolved is
    preferExported,
    preferModuleInfo, # fully qualified
    preferGenericArg,
    preferTypeName,
    preferResolved, # fully resolved symbols
    preferMixed,
      # most useful, shows: symbol + resolved symbols if it differs, e.g.:
      # tuple[a: MyInt{int}, b: float]
    preferInlayHint,
    preferInferredEffects,

  TTypeRelation* = enum      # order is important!
    isNone, isConvertible,
    isIntConv,
    isSubtype,
    isSubrange,              # subrange of the wanted type; no type conversion
                             # but apart from that counts as ``isSubtype``
    isBothMetaConvertible    # generic proc parameter was matched against
                             # generic type, e.g., map(mySeq, x=>x+1),
                             # maybe recoverable by rerun if the parameter is
                             # the proc's return value
    isInferred,              # generic proc was matched against a concrete type
    isInferredConvertible,   # same as above, but requiring proc CC conversion
    isGeneric,
    isFromIntLit,            # conversion *from* int literal; proven safe
    isEqual

  ProcConvMismatch* = enum
    pcmNoSideEffect
    pcmNotGcSafe
    pcmNotIterator
    pcmDifferentCallConv

proc typeToString*(typ: PType; prefer: TPreferedDesc = preferName): string

proc addTypeDeclVerboseMaybe*(result: var string, conf: ConfigRef; typ: PType) =
  if optDeclaredLocs in conf.globalOptions:
    result.add typeToString(typ, preferMixed)
    result.addDeclaredLoc(conf, typ)
  else:
    result.add typeToString(typ)

template `$`*(typ: PType): string = typeToString(typ)

# ------------------- type iterator: ----------------------------------------
type
  TTypeIter* = proc (t: PType, closure: RootRef): bool {.nimcall.} # true if iteration should stop
  TTypePredicate* = proc (t: PType): bool {.nimcall.}

proc iterOverType*(t: PType, iter: TTypeIter, closure: RootRef): bool
  # Returns result of `iter`.

type
  TParamsEquality* = enum     # they are equal, but their
                              # identifiers or their return
                              # type differ (i.e. they cannot be
                              # overloaded)
                              # this used to provide better error messages
    paramsNotEqual,           # parameters are not equal
    paramsEqual,              # parameters are equal
    paramsIncompatible

proc equalParams*(a, b: PNode): TParamsEquality
  # returns whether the parameter lists of the procs a, b are exactly the same

const
  # TODO: Remove tyTypeDesc from each abstractX and (where necessary)
  # replace with typedescX
  abstractPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyDistinct, tyOrdinal,
                   tyTypeDesc, tyAlias, tyInferred, tySink, tyLent, tyOwned}
  abstractVar* = {tyVar, tyGenericInst, tyDistinct, tyOrdinal, tyTypeDesc,
                  tyAlias, tyInferred, tySink, tyLent, tyOwned}
  abstractRange* = {tyGenericInst, tyRange, tyDistinct, tyOrdinal, tyTypeDesc,
                    tyAlias, tyInferred, tySink, tyOwned}
  abstractInstOwned* = abstractInst + {tyOwned}
  skipPtrs* = {tyVar, tyPtr, tyRef, tyGenericInst, tyTypeDesc, tyAlias,
               tyInferred, tySink, tyLent, tyOwned}
  # typedescX is used if we're sure tyTypeDesc should be included (or skipped)
  typedescPtrs* = abstractPtrs + {tyTypeDesc}
  typedescInst* = abstractInst + {tyTypeDesc, tyOwned, tyUserTypeClass}

proc invalidGenericInst*(f: PType): bool =
  result = f.kind == tyGenericInst and skipModifier(f) == nil

proc isPureObject*(typ: PType): bool =
  var t = typ
  while t.kind == tyObject and t.baseClass != nil:
    t = t.baseClass.skipTypes(skipPtrs)
  result = t.sym != nil and sfPure in t.sym.flags

proc isUnsigned*(t: PType): bool =
  t.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}

proc getOrdValueAux*(n: PNode, err: var bool): Int128 =
  var k = n.kind
  if n.typ != nil and n.typ.skipTypes(abstractInst).kind in {tyChar, tyUInt..tyUInt64}:
    k = nkUIntLit

  case k
  of nkCharLit, nkUIntLit..nkUInt64Lit:
    # XXX: enable this assert
    #assert n.typ == nil or isUnsigned(n.typ), $n.typ
    toInt128(cast[uint64](n.intVal))
  of nkIntLit..nkInt64Lit:
    # XXX: enable this assert
    #assert n.typ == nil or not isUnsigned(n.typ), $n.typ.kind
    toInt128(n.intVal)
  of nkNilLit:
    int128.Zero
  of nkHiddenStdConv:
    getOrdValueAux(n[1], err)
  else:
    err = true
    int128.Zero

proc getOrdValue*(n: PNode): Int128 =
  var err: bool = false
  result = getOrdValueAux(n, err)
  #assert err == false

proc getOrdValue*(n: PNode, onError: Int128): Int128 =
  var err = false
  result = getOrdValueAux(n, err)
  if err:
    result = onError

proc getFloatValue*(n: PNode): BiggestFloat =
  case n.kind
  of nkFloatLiterals: n.floatVal
  of nkHiddenStdConv: getFloatValue(n[1])
  else: NaN

proc isIntLit*(t: PType): bool {.inline.} =
  result = t.kind == tyInt and t.n != nil and t.n.kind == nkIntLit

proc isFloatLit*(t: PType): bool {.inline.} =
  result = t.kind == tyFloat and t.n != nil and t.n.kind == nkFloatLit

proc addTypeHeader*(result: var string, conf: ConfigRef; typ: PType; prefer: TPreferedDesc = preferMixed; getDeclarationPath = true) =
  result.add typeToString(typ, prefer)
  if getDeclarationPath: result.addDeclaredLoc(conf, typ.sym)

proc getProcHeader*(conf: ConfigRef; sym: PSym; prefer: TPreferedDesc = preferName; getDeclarationPath = true): string =
  assert sym != nil
  # consider using `skipGenericOwner` to avoid fun2.fun2 when fun2 is generic
  result = sym.owner.name.s & '.' & sym.name.s
  if sym.kind in routineKinds:
    result.add '('
    var n = sym.typ.n
    for i in 1..<n.len:
      let p = n[i]
      if p.kind == nkSym:
        result.add(p.sym.name.s)
        result.add(": ")
        result.add(typeToString(p.sym.typ, prefer))
        if i != n.len-1: result.add(", ")
      else:
        result.add renderTree(p)
    result.add(')')
    if n[0].typ != nil:
      result.add(": " & typeToString(n[0].typ, prefer))
  if getDeclarationPath: result.addDeclaredLoc(conf, sym)

proc elemType*(t: PType): PType =
  assert(t != nil)
  case t.kind
  of tyGenericInst, tyDistinct, tyAlias, tySink: result = elemType(skipModifier(t))
  of tyArray: result = t.elementType
  of tyError: result = t
  else: result = t.elementType
  assert(result != nil)

proc enumHasHoles*(t: PType): bool =
  var b = t.skipTypes({tyRange, tyGenericInst, tyAlias, tySink})
  result = b.kind == tyEnum and tfEnumHasHoles in b.flags

proc isOrdinalType*(t: PType, allowEnumWithHoles: bool = false): bool =
  assert(t != nil)
  const
    baseKinds = {tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyEnum}
    parentKinds = {tyRange, tyOrdinal, tyGenericInst, tyAlias, tySink, tyDistinct}
  result = (t.kind in baseKinds and (not t.enumHasHoles or allowEnumWithHoles)) or
    (t.kind in parentKinds and isOrdinalType(t.skipModifier, allowEnumWithHoles))

proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
                     closure: RootRef): bool
proc iterOverNode(marker: var IntSet, n: PNode, iter: TTypeIter,
                  closure: RootRef): bool =
  if n != nil:
    case n.kind
    of nkNone..nkNilLit:
      # a leaf
      result = iterOverTypeAux(marker, n.typ, iter, closure)
    else:
      result = iterOverTypeAux(marker, n.typ, iter, closure)
      if result: return
      for i in 0..<n.len:
        result = iterOverNode(marker, n[i], iter, closure)
        if result: return
  else:
    result = false

proc iterOverTypeAux(marker: var IntSet, t: PType, iter: TTypeIter,
                     closure: RootRef): bool =
  result = false
  if t == nil: return
  result = iter(t, closure)
  if result: return
  if not containsOrIncl(marker, t.id):
    case t.kind
    of tyGenericBody:
      # treat as atomic, containsUnresolvedType wants always false,
      # containsGenericType always gives true
      discard
    of tyGenericInst, tyAlias, tySink, tyInferred:
      result = iterOverTypeAux(marker, skipModifier(t), iter, closure)
    else:
      for a in t.kids:
        result = iterOverTypeAux(marker, a, iter, closure)
        if result: return
      if t.n != nil and t.kind != tyProc: result = iterOverNode(marker, t.n, iter, closure)

proc iterOverType(t: PType, iter: TTypeIter, closure: RootRef): bool =
  var marker = initIntSet()
  result = iterOverTypeAux(marker, t, iter, closure)

proc searchTypeForAux(t: PType, predicate: TTypePredicate,
                      marker: var IntSet): bool

proc searchTypeNodeForAux(n: PNode, p: TTypePredicate,
                          marker: var IntSet): bool =
  result = false
  case n.kind
  of nkRecList:
    for i in 0..<n.len:
      result = searchTypeNodeForAux(n[i], p, marker)
      if result: return
  of nkRecCase:
    assert(n[0].kind == nkSym)
    result = searchTypeNodeForAux(n[0], p, marker)
    if result: return
    for i in 1..<n.len:
      case n[i].kind
      of nkOfBranch, nkElse:
        result = searchTypeNodeForAux(lastSon(n[i]), p, marker)
        if result: return
      else: discard
  of nkSym:
    result = searchTypeForAux(n.sym.typ, p, marker)
  else: discard

proc searchTypeForAux(t: PType, predicate: TTypePredicate,
                      marker: var IntSet): bool =
  # iterates over VALUE types!
  result = false
  if t == nil: return
  if containsOrIncl(marker, t.id): return
  result = predicate(t)
  if result: return
  case t.kind
  of tyObject:
    if t.baseClass != nil:
      result = searchTypeForAux(t.baseClass.skipTypes(skipPtrs), predicate, marker)
    if not result: result = searchTypeNodeForAux(t.n, predicate, marker)
  of tyGenericInst, tyDistinct, tyAlias, tySink:
    result = searchTypeForAux(skipModifier(t), predicate, marker)
  of tyArray, tySet, tyTuple:
    for a in t.kids:
      result = searchTypeForAux(a, predicate, marker)
      if result: return
  else:
    discard

proc searchTypeFor*(t: PType, predicate: TTypePredicate): bool =
  var marker = initIntSet()
  result = searchTypeForAux(t, predicate, marker)

proc isObjectPredicate(t: PType): bool =
  result = t.kind == tyObject

proc containsObject*(t: PType): bool =
  result = searchTypeFor(t, isObjectPredicate)

proc isObjectWithTypeFieldPredicate(t: PType): bool =
  result = t.kind == tyObject and t.baseClass == nil and
      not (t.sym != nil and {sfPure, sfInfixCall} * t.sym.flags != {}) and
      tfFinal notin t.flags

type
  TTypeFieldResult* = enum
    frNone,                   # type has no object type field
    frHeader,                 # type has an object type field only in the header
    frEmbedded                # type has an object type field somewhere embedded

proc analyseObjectWithTypeFieldAux(t: PType,
                                   marker: var IntSet): TTypeFieldResult =
  result = frNone
  if t == nil: return
  case t.kind
  of tyObject:
    if t.n != nil:
      if searchTypeNodeForAux(t.n, isObjectWithTypeFieldPredicate, marker):
        return frEmbedded
    var x = t.baseClass
    if x != nil: x = x.skipTypes(skipPtrs)
    let res = analyseObjectWithTypeFieldAux(x, marker)
    if res == frEmbedded:
      return frEmbedded
    if res == frHeader: result = frHeader
    if result == frNone:
      if isObjectWithTypeFieldPredicate(t): result = frHeader
  of tyGenericInst, tyDistinct, tyAlias, tySink:
    result = analyseObjectWithTypeFieldAux(skipModifier(t), marker)
  of tyArray, tyTuple:
    for a in t.kids:
      let res = analyseObjectWithTypeFieldAux(a, marker)
      if res != frNone:
        return frEmbedded
  else:
    discard

proc analyseObjectWithTypeField*(t: PType): TTypeFieldResult =
  # this does a complex analysis whether a call to ``objectInit`` needs to be
  # made or initializing of the type field suffices or if there is no type field
  # at all in this type.
  var marker = initIntSet()
  result = analyseObjectWithTypeFieldAux(t, marker)

proc isGCRef(t: PType): bool =
  result = t.kind in GcTypeKinds or
    (t.kind == tyProc and t.callConv == ccClosure)
  if result and t.kind in {tyString, tySequence} and tfHasAsgn in t.flags:
    result = false

proc containsGarbageCollectedRef*(typ: PType): bool =
  # returns true if typ contains a reference, sequence or string (all the
  # things that are garbage-collected)
  result = searchTypeFor(typ, isGCRef)

proc isManagedMemory(t: PType): bool =
  result = t.kind in GcTypeKinds or
    (t.kind == tyProc and t.callConv == ccClosure)

proc containsManagedMemory*(typ: PType): bool =
  result = searchTypeFor(typ, isManagedMemory)

proc isTyRef(t: PType): bool =
  result = t.kind == tyRef or (t.kind == tyProc and t.callConv == ccClosure)

proc containsTyRef*(typ: PType): bool =
  # returns true if typ contains a 'ref'
  result = searchTypeFor(typ, isTyRef)

proc isHiddenPointer(t: PType): bool =
  result = t.kind in {tyString, tySequence, tyOpenArray, tyVarargs}

proc containsHiddenPointer*(typ: PType): bool =
  # returns true if typ contains a string, table or sequence (all the things
  # that need to be copied deeply)
  result = searchTypeFor(typ, isHiddenPointer)

proc canFormAcycleAux(g: ModuleGraph; marker: var IntSet, typ: PType, orig: PType, withRef: bool, hasTrace: bool): bool
proc canFormAcycleNode(g: ModuleGraph; marker: var IntSet, n: PNode, orig: PType, withRef: bool, hasTrace: bool): bool =
  result = false
  if n != nil:
    var hasCursor = n.kind == nkSym and sfCursor in n.sym.flags
    # cursor fields don't own the refs, which cannot form reference cycles
    if hasTrace or not hasCursor:
      result = canFormAcycleAux(g, marker, n.typ, orig, withRef, hasTrace)
      if not result:
        case n.kind
        of nkNone..nkNilLit:
          discard
        else:
          for i in 0..<n.len:
            result = canFormAcycleNode(g, marker, n[i], orig, withRef, hasTrace)
            if result: return


proc sameBackendType*(x, y: PType): bool
proc canFormAcycleAux(g: ModuleGraph, marker: var IntSet, typ: PType, orig: PType, withRef: bool, hasTrace: bool): bool =
  result = false
  if typ == nil: return
  if tfAcyclic in typ.flags: return
  var t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
  if tfAcyclic in t.flags: return
  case t.kind
  of tyRef, tyPtr, tyUncheckedArray:
    if t.kind == tyRef or hasTrace:
      if withRef and sameBackendType(t, orig):
        result = true
      elif not containsOrIncl(marker, t.id):
        result = canFormAcycleAux(g, marker, t.elementType, orig, withRef or t.kind != tyUncheckedArray, hasTrace)
  of tyObject:
    if withRef and sameBackendType(t, orig):
      result = true
    elif not containsOrIncl(marker, t.id):
      var hasTrace = hasTrace
      let op = getAttachedOp(g, t.skipTypes({tyRef}), attachedTrace)
      if op != nil and sfOverridden in op.flags:
        hasTrace = true
      if t.baseClass != nil:
        result = canFormAcycleAux(g, marker, t.baseClass, orig, withRef, hasTrace)
        if result: return
      if t.n != nil: result = canFormAcycleNode(g, marker, t.n, orig, withRef, hasTrace)
    # Inheritance can introduce cyclic types, however this is not relevant
    # as the type that is passed to 'new' is statically known!
    # er but we use it also for the write barrier ...
    if tfFinal notin t.flags:
      # damn inheritance may introduce cycles:
      result = true
  of tyTuple:
    if withRef and sameBackendType(t, orig):
      result = true
    elif not containsOrIncl(marker, t.id):
      for a in t.kids:
        result = canFormAcycleAux(g, marker, a, orig, withRef, hasTrace)
        if result: return
  of tySequence, tyArray, tyOpenArray, tyVarargs:
    if withRef and sameBackendType(t, orig):
      result = true
    elif not containsOrIncl(marker, t.id):
      result = canFormAcycleAux(g, marker, t.elementType, orig, withRef, hasTrace)
  of tyProc: result = typ.callConv == ccClosure
  else: discard

proc isFinal*(t: PType): bool =
  let t = t.skipTypes(abstractInst)
  result = t.kind != tyObject or tfFinal in t.flags or isPureObject(t)

proc canFormAcycle*(g: ModuleGraph, typ: PType): bool =
  var marker = initIntSet()
  let t = skipTypes(typ, abstractInst+{tyOwned}-{tyTypeDesc})
  result = canFormAcycleAux(g, marker, t, t, false, false)

proc valueToString(a: PNode): string =
  case a.kind
  of nkCharLit, nkUIntLit..nkUInt64Lit:
    result = $cast[uint64](a.intVal)
  of nkIntLit..nkInt64Lit:
    result = $a.intVal
  of nkFloatLit..nkFloat128Lit: result = $a.floatVal
  of nkStrLit..nkTripleStrLit: result = a.strVal
  of nkStaticExpr: result = "static(" & a[0].renderTree & ")"
  else: result = "<invalid value>"

proc rangeToStr(n: PNode): string =
  assert(n.kind == nkRange)
  result = valueToString(n[0]) & ".." & valueToString(n[1])

const
  typeToStr: array[TTypeKind, string] = ["None", "bool", "char", "empty",
    "Alias", "typeof(nil)", "untyped", "typed", "typeDesc",
    # xxx typeDesc=>typedesc: typedesc is declared as such, and is 10x more common.
    "GenericInvocation", "GenericBody", "GenericInst", "GenericParam",
    "distinct $1", "enum", "ordinal[$1]", "array[$1, $2]", "object", "tuple",
    "set[$1]", "range[$1]", "ptr ", "ref ", "var ", "seq[$1]", "proc",
    "pointer", "OpenArray[$1]", "string", "cstring", "Forward",
    "int", "int8", "int16", "int32", "int64",
    "float", "float32", "float64", "float128",
    "uint", "uint8", "uint16", "uint32", "uint64",
    "owned", "sink",
    "lent ", "varargs[$1]", "UncheckedArray[$1]", "Error Type",
    "BuiltInTypeClass", "UserTypeClass",
    "UserTypeClassInst", "CompositeTypeClass", "inferred",
    "and", "or", "not", "any", "static", "TypeFromExpr", "concept", # xxx bugfix
    "void", "iterable"]

const preferToResolveSymbols = {preferName, preferTypeName, preferModuleInfo,
  preferGenericArg, preferResolved, preferMixed, preferInlayHint, preferInferredEffects}

template bindConcreteTypeToUserTypeClass*(tc, concrete: PType) =
  tc.add concrete
  tc.flags.incl tfResolved

# TODO: It would be a good idea to kill the special state of a resolved
# concept by switching to tyAlias within the instantiated procs.
# Currently, tyAlias is always skipped with skipModifier, which means that
# we can store information about the matched concept in another position.
# Then builtInFieldAccess can be modified to properly read the derived
# consts and types stored within the concept.
template isResolvedUserTypeClass*(t: PType): bool =
  tfResolved in t.flags

proc addTypeFlags(name: var string, typ: PType) {.inline.} =
  if tfNotNil in typ.flags: name.add(" not nil")

proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
  let preferToplevel = prefer
  proc getPrefer(prefer: TPreferedDesc): TPreferedDesc =
    if preferToplevel in {preferResolved, preferMixed}:
      preferToplevel # sticky option
    else:
      prefer

  proc typeToString(typ: PType, prefer: TPreferedDesc = preferName): string =
    result = ""
    let prefer = getPrefer(prefer)
    let t = typ
    if t == nil: return
    if prefer in preferToResolveSymbols and t.sym != nil and
         sfAnon notin t.sym.flags and t.kind != tySequence:
      if t.kind == tyInt and isIntLit(t):
        if prefer == preferInlayHint:
          result = t.sym.name.s
        else:
          result = t.sym.name.s & " literal(" & $t.n.intVal & ")"
      elif t.kind == tyAlias and t.elementType.kind != tyAlias:
        result = typeToString(t.elementType)
      elif prefer in {preferResolved, preferMixed}:
        case t.kind
        of IntegralTypes + {tyFloat..tyFloat128} + {tyString, tyCstring}:
          result = typeToStr[t.kind]
        of tyGenericBody:
          result = typeToString(t.last)
        of tyCompositeTypeClass:
          # avoids showing `A[any]` in `proc fun(a: A)` with `A = object[T]`
          result = typeToString(t.last.last)
        else:
          result = t.sym.name.s
        if prefer == preferMixed and result != t.sym.name.s:
          result = t.sym.name.s & "{" & result & "}"
      elif prefer in {preferName, preferTypeName, preferInlayHint, preferInferredEffects} or t.sym.owner.isNil:
        # note: should probably be: {preferName, preferTypeName, preferGenericArg}
        result = t.sym.name.s
        if t.kind == tyGenericParam and t.genericParamHasConstraints:
          result.add ": "
          result.add t.elementType.typeToString
      else:
        result = t.sym.owner.name.s & '.' & t.sym.name.s
      result.addTypeFlags(t)
      return
    case t.kind
    of tyInt:
      if not isIntLit(t) or prefer == preferExported:
        result = typeToStr[t.kind]
      else:
        case prefer:
        of preferGenericArg:
          result = $t.n.intVal
        of preferInlayHint:
          result = "int"
        else:
          result = "int literal(" & $t.n.intVal & ")"
    of tyGenericInst:
      result = typeToString(t.genericHead) & '['
      for needsComma, a in t.genericInstParams:
        if needsComma: result.add(", ")
        result.add(typeToString(a, preferGenericArg))
      result.add(']')
    of tyGenericInvocation:
      result = typeToString(t.genericHead) & '['
      for needsComma, a in t.genericInvocationParams:
        if needsComma: result.add(", ")
        result.add(typeToString(a, preferGenericArg))
      result.add(']')
    of tyGenericBody:
      result = typeToString(t.typeBodyImpl) & '['
      for i, a in t.genericBodyParams:
        if i > 0: result.add(", ")
        result.add(typeToString(a, preferTypeName))
      result.add(']')
    of tyTypeDesc:
      if t.elementType.kind == tyNone: result = "typedesc"
      else: result = "typedesc[" & typeToString(t.elementType) & "]"
    of tyStatic:
      if prefer == preferGenericArg and t.n != nil:
        result = t.n.renderTree
      else:
        result = "static[" & (if t.hasElementType: typeToString(t.skipModifier) else: "") & "]"
        if t.n != nil: result.add "(" & renderTree(t.n) & ")"
    of tyUserTypeClass:
      if t.sym != nil and t.sym.owner != nil:
        if t.isResolvedUserTypeClass: return typeToString(t.last)
        return t.sym.owner.name.s
      else:
        result = "<invalid tyUserTypeClass>"
    of tyBuiltInTypeClass:
      result =
        case t.base.kind
        of tyVar: "var"
        of tyRef: "ref"
        of tyPtr: "ptr"
        of tySequence: "seq"
        of tyArray: "array"
        of tySet: "set"
        of tyRange: "range"
        of tyDistinct: "distinct"
        of tyProc: "proc"
        of tyObject: "object"
        of tyTuple: "tuple"
        of tyOpenArray: "openArray"
        else: typeToStr[t.base.kind]
    of tyInferred:
      let concrete = t.previouslyInferred
      if concrete != nil: result = typeToString(concrete)
      else: result = "inferred[" & typeToString(t.base) & "]"
    of tyUserTypeClassInst:
      let body = t.base
      result = body.sym.name.s & "["
      for needsComma, a in t.userTypeClassInstParams:
        if needsComma: result.add(", ")
        result.add(typeToString(a))
      result.add "]"
    of tyAnd:
      for i, son in t.ikids:
        if i > 0: result.add(" and ")
        result.add(typeToString(son))
    of tyOr:
      for i, son in t.ikids:
        if i > 0: result.add(" or ")
        result.add(typeToString(son))
    of tyNot:
      result = "not " & typeToString(t.elementType)
    of tyUntyped:
      #internalAssert t.len == 0
      result = "untyped"
    of tyFromExpr:
      if t.n == nil:
        result = "unknown"
      else:
        result = "typeof(" & renderTree(t.n) & ")"
    of tyArray:
      result = "array"
      if t.hasElementType:
        if t.indexType.kind == tyRange:
          result &= "[" & rangeToStr(t.indexType.n) & ", " &
              typeToString(t.elementType) & ']'
        else:
          result &= "[" & typeToString(t.indexType) & ", " &
              typeToString(t.elementType) & ']'
    of tyUncheckedArray:
      result = "UncheckedArray"
      if t.hasElementType:
        result &= "[" & typeToString(t.elementType) & ']'
    of tySequence:
      if t.sym != nil and prefer != preferResolved:
        result = t.sym.name.s
      else:
        result = "seq"
        if t.hasElementType:
          result &= "[" & typeToString(t.elementType) & ']'
    of tyOrdinal:
      result = "ordinal"
      if t.hasElementType:
        result &= "[" & typeToString(t.skipModifier) & ']'
    of tySet:
      result = "set"
      if t.hasElementType:
        result &= "[" & typeToString(t.elementType) & ']'
    of tyOpenArray:
      result = "openArray"
      if t.hasElementType:
        result &= "[" & typeToString(t.elementType) & ']'
    of tyDistinct:
      result = "distinct " & typeToString(t.elementType,
        if prefer == preferModuleInfo: preferModuleInfo else: preferTypeName)
    of tyIterable:
      # xxx factor this pattern
      result = "iterable"
      if t.hasElementType:
        result &= "[" & typeToString(t.skipModifier) & ']'
    of tyTuple:
      # we iterate over t.sons here, because t.n may be nil
      if t.n != nil:
        result = "tuple["
        for i in 0..<t.n.len:
          assert(t.n[i].kind == nkSym)
          result.add(t.n[i].sym.name.s & ": " & typeToString(t.n[i].sym.typ))
          if i < t.n.len - 1: result.add(", ")
        result.add(']')
      elif t.isEmptyTupleType:
        result = "tuple[]"
      elif t.isSingletonTupleType:
        result = "("
        for son in t.kids:
          result.add(typeToString(son))
        result.add(",)")
      else:
        result = "("
        for i, son in t.ikids:
          if i > 0: result.add ", "
          result.add(typeToString(son))
        result.add(')')
    of tyPtr, tyRef, tyVar, tyLent:
      result = if isOutParam(t): "out " else: typeToStr[t.kind]
      result.add typeToString(t.elementType)
    of tyRange:
      result = "range "
      if t.n != nil and t.n.kind == nkRange:
        result.add rangeToStr(t.n)
      if prefer != preferExported:
        result.add("(" & typeToString(t.elementType) & ")")
    of tyProc:
      result = if tfIterator in t.flags: "iterator "
               elif t.owner != nil:
                 case t.owner.kind
                 of skTemplate: "template "
                 of skMacro: "macro "
                 of skConverter: "converter "
                 else: "proc "
              else:
                "proc "
      if tfUnresolved in t.flags: result.add "[*missing parameters*]"
      result.add "("
      for i, a in t.paramTypes:
        if i > FirstParamAt: result.add(", ")
        let j = paramTypeToNodeIndex(i)
        if t.n != nil and j < t.n.len and t.n[j].kind == nkSym:
          result.add(t.n[j].sym.name.s)
          result.add(": ")
        result.add(typeToString(a))
      result.add(')')
      if t.returnType != nil: result.add(": " & typeToString(t.returnType))
      var prag = if t.callConv == ccNimCall and tfExplicitCallConv notin t.flags: "" else: $t.callConv
      var hasImplicitRaises = false
      if not isNil(t.owner) and not isNil(t.owner.ast) and (t.owner.ast.len - 1) >= pragmasPos:
        let pragmasNode = t.owner.ast[pragmasPos]
        let raisesSpec = effectSpec(pragmasNode, wRaises)
        if not isNil(raisesSpec):
          addSep(prag)
          prag.add("raises: ")
          prag.add($raisesSpec)
          hasImplicitRaises = true
      if tfNoSideEffect in t.flags:
        addSep(prag)
        prag.add("noSideEffect")
      if tfThread in t.flags:
        addSep(prag)
        prag.add("gcsafe")
      var effectsOfStr = ""
      for i, a in t.paramTypes:
        let j = paramTypeToNodeIndex(i)
        if t.n != nil and j < t.n.len and t.n[j].kind == nkSym and t.n[j].sym.kind == skParam and sfEffectsDelayed in t.n[j].sym.flags:
          addSep(effectsOfStr)
          effectsOfStr.add(t.n[j].sym.name.s)
      if effectsOfStr != "":
        addSep(prag)
        prag.add("effectsOf: ")
        prag.add(effectsOfStr)
      if not hasImplicitRaises and prefer == preferInferredEffects and not isNil(t.owner) and not isNil(t.owner.typ) and not isNil(t.owner.typ.n) and (t.owner.typ.n.len > 0):
        let effects = t.owner.typ.n[0]
        if effects.kind == nkEffectList and effects.len == effectListLen:
          var inferredRaisesStr = ""
          let effs = effects[exceptionEffects]
          if not isNil(effs):
            for eff in items(effs):
              if not isNil(eff):
                addSep(inferredRaisesStr)
                inferredRaisesStr.add($eff.typ)
          addSep(prag)
          prag.add("raises: <inferred> [")
          prag.add(inferredRaisesStr)
          prag.add("]")
      if prag.len != 0: result.add("{." & prag & ".}")
    of tyVarargs:
      result = typeToStr[t.kind] % typeToString(t.elementType)
    of tySink:
      result = "sink " & typeToString(t.skipModifier)
    of tyOwned:
      result = "owned " & typeToString(t.elementType)
    else:
      result = typeToStr[t.kind]
    result.addTypeFlags(t)
  result = typeToString(typ, prefer)

proc firstOrd*(conf: ConfigRef; t: PType): Int128 =
  case t.kind
  of tyBool, tyChar, tySequence, tyOpenArray, tyString, tyVarargs, tyError:
    result = Zero
  of tySet, tyVar: result = firstOrd(conf, t.elementType)
  of tyArray: result = firstOrd(conf, t.indexType)
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    result = getOrdValue(t.n[0])
  of tyInt:
    if conf != nil:
      case conf.target.intSize
      of 8: result = toInt128(0x8000000000000000'i64)
      of 4: result = toInt128(-2147483648)
      of 2: result = toInt128(-32768)
      of 1: result = toInt128(-128)
      else: result = Zero
    else:
      result = toInt128(0x8000000000000000'i64)
  of tyInt8: result =  toInt128(-128)
  of tyInt16: result = toInt128(-32768)
  of tyInt32: result = toInt128(-2147483648)
  of tyInt64: result = toInt128(0x8000000000000000'i64)
  of tyUInt..tyUInt64: result = Zero
  of tyEnum:
    # if basetype <> nil then return firstOrd of basetype
    if t.baseClass != nil:
      result = firstOrd(conf, t.baseClass)
    else:
      if t.n.len > 0:
        assert(t.n[0].kind == nkSym)
        result = toInt128(t.n[0].sym.position)
      else:
        result = Zero
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyLent:
    result = firstOrd(conf, skipModifier(t))
  of tyUserTypeClasses:
    result = firstOrd(conf, last(t))
  of tyOrdinal:
    if t.hasElementType: result = firstOrd(conf, skipModifier(t))
    else:
      result = Zero
      fatal(conf, unknownLineInfo, "invalid kind for firstOrd(" & $t.kind & ')')
  of tyUncheckedArray, tyCstring:
    result = Zero
  else:
    result = Zero
    fatal(conf, unknownLineInfo, "invalid kind for firstOrd(" & $t.kind & ')')

proc firstFloat*(t: PType): BiggestFloat =
  case t.kind
  of tyFloat..tyFloat128: -Inf
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    getFloatValue(t.n[0])
  of tyVar: firstFloat(t.elementType)
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred:
    firstFloat(skipModifier(t))
  of tyUserTypeClasses:
    firstFloat(last(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for firstFloat(" & $t.kind & ')')
    NaN

proc targetSizeSignedToKind*(conf: ConfigRef): TTypeKind =
  case conf.target.intSize
  of 8: result = tyInt64
  of 4: result = tyInt32
  of 2: result = tyInt16
  else: result = tyNone

proc targetSizeUnsignedToKind*(conf: ConfigRef): TTypeKind =
  case conf.target.intSize
  of 8: result = tyUInt64
  of 4: result = tyUInt32
  of 2: result = tyUInt16
  else: result = tyNone

proc normalizeKind*(conf: ConfigRef, k: TTypeKind): TTypeKind =
  case k
  of tyInt:
    result = conf.targetSizeSignedToKind()
  of tyUInt:
    result = conf.targetSizeUnsignedToKind()
  else:
    result = k

proc lastOrd*(conf: ConfigRef; t: PType): Int128 =
  case t.kind
  of tyBool: result = toInt128(1'u)
  of tyChar: result = toInt128(255'u)
  of tySet, tyVar: result = lastOrd(conf, t.elementType)
  of tyArray: result = lastOrd(conf, t.indexType)
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    result = getOrdValue(t.n[1])
  of tyInt:
    if conf != nil:
      case conf.target.intSize
      of 8: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
      of 4: result = toInt128(0x7FFFFFFF)
      of 2: result = toInt128(0x00007FFF)
      of 1: result = toInt128(0x0000007F)
      else: result = Zero
    else: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
  of tyInt8: result = toInt128(0x0000007F)
  of tyInt16: result = toInt128(0x00007FFF)
  of tyInt32: result = toInt128(0x7FFFFFFF)
  of tyInt64: result = toInt128(0x7FFFFFFFFFFFFFFF'u64)
  of tyUInt:
    if conf != nil and conf.target.intSize == 4:
      result = toInt128(0xFFFFFFFF)
    else:
      result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
  of tyUInt8: result = toInt128(0xFF)
  of tyUInt16: result = toInt128(0xFFFF)
  of tyUInt32: result = toInt128(0xFFFFFFFF)
  of tyUInt64:
    result = toInt128(0xFFFFFFFFFFFFFFFF'u64)
  of tyEnum:
    if t.n.len > 0:
      assert(t.n[^1].kind == nkSym)
      result = toInt128(t.n[^1].sym.position)
    else:
      result = Zero
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred, tyLent:
    result = lastOrd(conf, skipModifier(t))
  of tyUserTypeClasses:
    result = lastOrd(conf, last(t))
  of tyError: result = Zero
  of tyOrdinal:
    if t.hasElementType: result = lastOrd(conf, skipModifier(t))
    else:
      result = Zero
      fatal(conf, unknownLineInfo, "invalid kind for lastOrd(" & $t.kind & ')')
  of tyUncheckedArray:
    result = Zero
  else:
    result = Zero
    fatal(conf, unknownLineInfo, "invalid kind for lastOrd(" & $t.kind & ')')

proc lastFloat*(t: PType): BiggestFloat =
  case t.kind
  of tyFloat..tyFloat128: Inf
  of tyVar: lastFloat(t.elementType)
  of tyRange:
    assert(t.n != nil)        # range directly given:
    assert(t.n.kind == nkRange)
    getFloatValue(t.n[1])
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred:
    lastFloat(skipModifier(t))
  of tyUserTypeClasses:
    lastFloat(last(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for lastFloat(" & $t.kind & ')')
    NaN

proc floatRangeCheck*(x: BiggestFloat, t: PType): bool =
  case t.kind
  # This needs to be special cased since NaN is never
  # part of firstFloat(t)..lastFloat(t)
  of tyFloat..tyFloat128:
    true
  of tyRange:
    x in firstFloat(t)..lastFloat(t)
  of tyVar:
    floatRangeCheck(x, t.elementType)
  of tyGenericInst, tyDistinct, tyTypeDesc, tyAlias, tySink,
     tyStatic, tyInferred:
    floatRangeCheck(x, skipModifier(t))
  of tyUserTypeClasses:
    floatRangeCheck(x, last(t))
  else:
    internalError(newPartialConfigRef(), "invalid kind for floatRangeCheck:" & $t.kind)
    false

proc lengthOrd*(conf: ConfigRef; t: PType): Int128 =
  if t.skipTypes(tyUserTypeClasses).kind == tyDistinct:
    result = lengthOrd(conf, t.skipModifier)
  else:
    let last = lastOrd(conf, t)
    let first = firstOrd(conf, t)
    result = last - first + One

# -------------- type equality -----------------------------------------------

type
  TDistinctCompare* = enum ## how distinct types are to be compared
    dcEq,                  ## a and b should be the same type
    dcEqIgnoreDistinct,    ## compare symmetrically: (distinct a) == b, a == b
                           ## or a == (distinct b)
    dcEqOrDistinctOf       ## a equals b or a is distinct of b

  TTypeCmpFlag* = enum
    IgnoreTupleFields      ## NOTE: Only set this flag for backends!
    IgnoreCC
    ExactTypeDescValues
    ExactGenericParams
    ExactConstraints
    ExactGcSafety
    AllowCommonBase
    PickyCAliases  # be picky about the distinction between 'cint' and 'int32'
    IgnoreFlags    # used for borrowed functions and methods; ignores the tfVarIsPtr flag
    PickyBackendAliases # be picky about different aliases
    IgnoreRangeShallow

  TTypeCmpFlags* = set[TTypeCmpFlag]

  TSameTypeClosure = object
    cmp: TDistinctCompare
    recCheck: int
    flags: TTypeCmpFlags
    s: seq[tuple[a,b: int]] # seq for a set as it's hopefully faster
                            # (few elements expected)

proc initSameTypeClosure: TSameTypeClosure =
  # we do the initialization lazily for performance (avoids memory allocations)
  result = TSameTypeClosure()

proc containsOrIncl(c: var TSameTypeClosure, a, b: PType): bool =
  result = c.s.len > 0 and c.s.contains((a.id, b.id))
  if not result:
    c.s.add((a.id, b.id))

proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool
proc sameTypeOrNilAux(a, b: PType, c: var TSameTypeClosure): bool =
  if a == b:
    result = true
  else:
    if a == nil or b == nil: result = false
    else: result = sameTypeAux(a, b, c)

proc sameType*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
  var c = initSameTypeClosure()
  c.flags = flags
  result = sameTypeAux(a, b, c)

proc sameTypeOrNil*(a, b: PType, flags: TTypeCmpFlags = {}): bool =
  if a == b:
    result = true
  else:
    if a == nil or b == nil: result = false
    else: result = sameType(a, b, flags)

proc equalParam(a, b: PSym): TParamsEquality =
  if sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}) and
      exprStructuralEquivalent(a.constraint, b.constraint):
    if a.ast == b.ast:
      result = paramsEqual
    elif a.ast != nil and b.ast != nil:
      if exprStructuralEquivalent(a.ast, b.ast): result = paramsEqual
      else: result = paramsIncompatible
    elif a.ast != nil:
      result = paramsEqual
    elif b.ast != nil:
      result = paramsIncompatible
    else:
      result = paramsNotEqual
  else:
    result = paramsNotEqual

proc sameConstraints(a, b: PNode): bool =
  if isNil(a) and isNil(b): return true
  if a.len != b.len: return false
  for i in 1..<a.len:
    if not exprStructuralEquivalent(a[i].sym.constraint,
                                    b[i].sym.constraint):
      return false
  return true

proc equalParams(a, b: PNode): TParamsEquality =
  result = paramsEqual
  if a.len != b.len:
    result = paramsNotEqual
  else:
    for i in 1..<a.len:
      var m = a[i].sym
      var n = b[i].sym
      assert((m.kind == skParam) and (n.kind == skParam))
      case equalParam(m, n)
      of paramsNotEqual:
        return paramsNotEqual
      of paramsEqual:
        discard
      of paramsIncompatible:
        result = paramsIncompatible
      if m.name.id != n.name.id:
        # BUGFIX
        return paramsNotEqual # paramsIncompatible;
      # continue traversal! If not equal, we can return immediately; else
      # it stays incompatible
    if not sameTypeOrNil(a.typ, b.typ, {ExactTypeDescValues}):
      if (a.typ == nil) or (b.typ == nil):
        result = paramsNotEqual # one proc has a result, the other not is OK
      else:
        result = paramsIncompatible # overloading by different
                                    # result types does not work

proc sameTuple(a, b: PType, c: var TSameTypeClosure): bool =
  # two tuples are equivalent iff the names, types and positions are the same;
  # however, both types may not have any field names (t.n may be nil) which
  # complicates the matter a bit.
  if sameTupleLengths(a, b):
    result = true
    for i, aa, bb in tupleTypePairs(a, b):
      var x = aa
      var y = bb
      if IgnoreTupleFields in c.flags:
        x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
        y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})

      result = sameTypeAux(x, y, c)
      if not result: return
    if a.n != nil and b.n != nil and IgnoreTupleFields notin c.flags:
      for i in 0..<a.n.len:
        # check field names:
        if a.n[i].kind == nkSym and b.n[i].kind == nkSym:
          var x = a.n[i].sym
          var y = b.n[i].sym
          result = x.name.id == y.name.id
          if not result: break
        else:
          return false
    elif a.n != b.n and (a.n == nil or b.n == nil) and IgnoreTupleFields notin c.flags:
      result = false
  else:
    result = false

template ifFastObjectTypeCheckFailed(a, b: PType, body: untyped) =
  if tfFromGeneric notin a.flags + b.flags:
    # fast case: id comparison suffices:
    result = a.id == b.id
  else:
    # expensive structural equality test; however due to the way generic and
    # objects work, if one of the types does **not** contain tfFromGeneric,
    # they cannot be equal. The check ``a.sym.id == b.sym.id`` checks
    # for the same origin and is essential because we don't want "pure"
    # structural type equivalence:
    #
    # type
    #   TA[T] = object
    #   TB[T] = object
    # --> TA[int] != TB[int]
    if tfFromGeneric in a.flags * b.flags and a.sym.id == b.sym.id:
      # ok, we need the expensive structural check
      body
    else:
      result = false

proc sameObjectTypes*(a, b: PType): bool =
  # specialized for efficiency (sigmatch uses it)
  ifFastObjectTypeCheckFailed(a, b):
    var c = initSameTypeClosure()
    result = sameTypeAux(a, b, c)

proc sameDistinctTypes*(a, b: PType): bool {.inline.} =
  result = sameObjectTypes(a, b)

proc sameEnumTypes*(a, b: PType): bool {.inline.} =
  result = a.id == b.id

proc sameObjectTree(a, b: PNode, c: var TSameTypeClosure): bool =
  if a == b:
    result = true
  elif a != nil and b != nil and a.kind == b.kind:
    var x = a.typ
    var y = b.typ
    if IgnoreTupleFields in c.flags:
      if x != nil: x = skipTypes(x, {tyRange, tyGenericInst, tyAlias})
      if y != nil: y = skipTypes(y, {tyRange, tyGenericInst, tyAlias})
    if sameTypeOrNilAux(x, y, c):
      case a.kind
      of nkSym:
        # same symbol as string is enough:
        result = a.sym.name.id == b.sym.name.id
      of nkIdent: result = a.ident.id == b.ident.id
      of nkCharLit..nkInt64Lit: result = a.intVal == b.intVal
      of nkFloatLit..nkFloat64Lit: result = a.floatVal == b.floatVal
      of nkStrLit..nkTripleStrLit: result = a.strVal == b.strVal
      of nkEmpty, nkNilLit, nkType: result = true
      else:
        if a.len == b.len:
          for i in 0..<a.len:
            if not sameObjectTree(a[i], b[i], c): return
          result = true
        else:
          result = false
    else:
      result = false
  else:
    result = false

proc sameObjectStructures(a, b: PType, c: var TSameTypeClosure): bool =
  if not sameTypeOrNilAux(a.baseClass, b.baseClass, c): return false
  if not sameObjectTree(a.n, b.n, c): return false
  result = true

proc sameChildrenAux(a, b: PType, c: var TSameTypeClosure): bool =
  if not sameTupleLengths(a, b): return false
  # XXX This is not tuple specific.
  result = true
  for _, x, y in tupleTypePairs(a, b):
    result = sameTypeOrNilAux(x, y, c)
    if not result: return

proc isGenericAlias*(t: PType): bool =
  return t.kind == tyGenericInst and t.skipModifier.kind == tyGenericInst

proc genericAliasDepth*(t: PType): int =
  result = 0
  var it = t
  while it.isGenericAlias:
    it = it.skipModifier
    inc result

proc skipGenericAlias*(t: PType): PType =
  return if t.isGenericAlias: t.skipModifier else: t

proc sameFlags*(a, b: PType): bool {.inline.} =
  result = eqTypeFlags*a.flags == eqTypeFlags*b.flags

proc sameTypeAux(x, y: PType, c: var TSameTypeClosure): bool =
  result = false
  template cycleCheck() =
    # believe it or not, the direct check for ``containsOrIncl(c, a, b)``
    # increases bootstrapping time from 2.4s to 3.3s on my laptop! So we cheat
    # again: Since the recursion check is only to not get caught in an endless
    # recursion, we use a counter and only if it's value is over some
    # threshold we perform the expensive exact cycle check:
    if c.recCheck < 3:
      inc c.recCheck
    else:
      if containsOrIncl(c, a, b): return true
  template maybeSkipRange(x: set[TTypeKind]): set[TTypeKind] =
    if IgnoreRangeShallow in c.flags:
      x + {tyRange}
    else:
      x
  
  template withoutShallowFlags(body) =
    let oldFlags = c.flags
    c.flags.excl IgnoreRangeShallow
    body
    c.flags = oldFlags

  if x == y: return true
  let aliasSkipSet = maybeSkipRange({tyAlias})
  var a = skipTypes(x, aliasSkipSet)
  while a.kind == tyUserTypeClass and tfResolved in a.flags:
    a = skipTypes(a.last, aliasSkipSet)
  var b = skipTypes(y, aliasSkipSet)
  while b.kind == tyUserTypeClass and tfResolved in b.flags:
    b = skipTypes(b.last, aliasSkipSet)
  assert(a != nil)
  assert(b != nil)
  case c.cmp
  of dcEq:
    if a.kind != b.kind: return false
  of dcEqIgnoreDistinct:
    let distinctSkipSet = maybeSkipRange({tyDistinct, tyGenericInst})
    a = a.skipTypes(distinctSkipSet)
    b = b.skipTypes(distinctSkipSet)
    if a.kind != b.kind: return false
  of dcEqOrDistinctOf:
    let distinctSkipSet = maybeSkipRange({tyDistinct, tyGenericInst})
    a = a.skipTypes(distinctSkipSet)
    if a.kind != b.kind: return false

  #[
    The following code should not run in the case either side is an generic alias,
    but it's not presently possible to distinguish the genericinsts from aliases of
    objects ie `type A[T] = SomeObject`
  ]#
  # this is required by tunique_type but makes no sense really:
  if c.cmp == dcEq and x.kind == tyGenericInst and
      IgnoreTupleFields notin c.flags and tyDistinct != y.kind:
    let
      lhs = x.skipGenericAlias
      rhs = y.skipGenericAlias
    if rhs.kind != tyGenericInst or lhs.base != rhs.base or rhs.kidsLen != lhs.kidsLen:
      return false
    withoutShallowFlags:
      for ff, aa in underspecifiedPairs(rhs, lhs, 1, -1):
        if not sameTypeAux(ff, aa, c): return false
    return true

  case a.kind
  of tyEmpty, tyChar, tyBool, tyNil, tyPointer, tyString, tyCstring,
     tyInt..tyUInt64, tyTyped, tyUntyped, tyVoid:
    result = sameFlags(a, b)
    if result and {PickyCAliases, ExactTypeDescValues} <= c.flags:
      # additional requirement for the caching of generics for importc'ed types:
      # the symbols must be identical too:
      let symFlagsA = if a.sym != nil: a.sym.flags else: {}
      let symFlagsB = if b.sym != nil: b.sym.flags else: {}
      if (symFlagsA+symFlagsB) * {sfImportc, sfExportc} != {}:
        result = symFlagsA == symFlagsB
    elif result and PickyBackendAliases in c.flags:
      let symFlagsA = if a.sym != nil: a.sym.flags else: {}
      let symFlagsB = if b.sym != nil: b.sym.flags else: {}
      if (symFlagsA+symFlagsB) * {sfImportc, sfExportc} != {}:
        result = a.id == b.id

  of tyStatic, tyFromExpr:
    result = exprStructuralEquivalent(a.n, b.n) and sameFlags(a, b)
    if result and sameTupleLengths(a, b) and a.hasElementType:
      cycleCheck()
      result = sameTypeAux(a.skipModifier, b.skipModifier, c)
  of tyObject:
    withoutShallowFlags:
      ifFastObjectTypeCheckFailed(a, b):
        cycleCheck()
        result = sameObjectStructures(a, b, c) and sameFlags(a, b)
  of tyDistinct:
    cycleCheck()
    if c.cmp == dcEq:
      if sameFlags(a, b):
        ifFastObjectTypeCheckFailed(a, b):
          result = sameTypeAux(a.elementType, b.elementType, c)
    else:
      result = sameTypeAux(a.elementType, b.elementType, c) and sameFlags(a, b)
  of tyEnum, tyForward:
    # XXX generic enums do not make much sense, but require structural checking
    result = a.id == b.id and sameFlags(a, b)
  of tyError:
    result = b.kind == tyError
  of tyTuple:
    withoutShallowFlags:
      cycleCheck()
      result = sameTuple(a, b, c) and sameFlags(a, b)
  of tyTypeDesc:
    if c.cmp == dcEqIgnoreDistinct: result = false
    elif ExactTypeDescValues in c.flags:
      cycleCheck()
      result = sameChildrenAux(x, y, c) and sameFlags(a, b)
    else:
      result = sameFlags(a, b)
  of tyGenericParam:
    result = sameChildrenAux(a, b, c) and sameFlags(a, b)
    if result and {ExactGenericParams, ExactTypeDescValues} * c.flags != {}:
      result = a.sym.position == b.sym.position
  of tyBuiltInTypeClass:
    result = a.elementType.kind == b.elementType.kind and sameFlags(a.elementType, b.elementType)
    if result and a.elementType.kind == tyProc and IgnoreCC notin c.flags:
      let ecc = a.elementType.flags * {tfExplicitCallConv}
      result = ecc == b.elementType.flags * {tfExplicitCallConv} and
               (ecc == {} or a.elementType.callConv == b.elementType.callConv)
  of tyGenericInvocation, tyGenericBody, tySequence, tyOpenArray, tySet, tyRef,
     tyPtr, tyVar, tyLent, tySink, tyUncheckedArray, tyArray, tyProc, tyVarargs,
     tyOrdinal, tyCompositeTypeClass, tyUserTypeClass, tyUserTypeClassInst,
     tyAnd, tyOr, tyNot, tyAnything, tyOwned:
    cycleCheck()
    if a.kind == tyUserTypeClass and a.n != nil: return a.n == b.n
    withoutShallowFlags:
      result = sameChildrenAux(a, b, c)
    if result and IgnoreFlags notin c.flags:
      if IgnoreTupleFields in c.flags:
        result = a.flags * {tfVarIsPtr, tfIsOutParam} == b.flags * {tfVarIsPtr, tfIsOutParam}
      else:
        result = sameFlags(a, b)
    if result and ExactGcSafety in c.flags:
      result = a.flags * {tfThread} == b.flags * {tfThread}
    if result and a.kind == tyProc:
      result = ((IgnoreCC in c.flags) or a.callConv == b.callConv) and
               ((ExactConstraints notin c.flags) or sameConstraints(a.n, b.n))
  of tyRange:
    cycleCheck()
    result = sameTypeOrNilAux(a.elementType, b.elementType, c)
    if result and IgnoreRangeShallow notin c.flags:
      result = sameValue(a.n[0], b.n[0]) and
        sameValue(a.n[1], b.n[1])
  of tyAlias, tyInferred, tyIterable:
    cycleCheck()
    result = sameTypeAux(a.skipModifier, b.skipModifier, c)
  of tyGenericInst:
    # BUG #23445
    # The type system must distinguish between `T[int] = object #[empty]#`
    # and `T[float] = object #[empty]#`!
    cycleCheck()
    withoutShallowFlags:
      for ff, aa in underspecifiedPairs(a, b, 1, -1):
        if not sameTypeAux(ff, aa, c): return false
    result = sameTypeAux(a.skipModifier, b.skipModifier, c)
  of tyNone: result = false
  of tyConcept:
    result = exprStructuralEquivalent(a.n, b.n)

proc sameBackendType*(x, y: PType): bool =
  var c = initSameTypeClosure()
  c.flags.incl IgnoreTupleFields
  c.cmp = dcEqIgnoreDistinct
  result = sameTypeAux(x, y, c)

proc sameBackendTypeIgnoreRange*(x, y: PType): bool =
  var c = initSameTypeClosure()
  c.flags.incl IgnoreTupleFields
  c.flags.incl IgnoreRangeShallow
  c.cmp = dcEqIgnoreDistinct
  result = sameTypeAux(x, y, c)

proc sameBackendTypePickyAliases*(x, y: PType): bool =
  var c = initSameTypeClosure()
  c.flags.incl {IgnoreTupleFields, PickyCAliases, PickyBackendAliases}
  c.cmp = dcEqIgnoreDistinct
  result = sameTypeAux(x, y, c)

proc compareTypes*(x, y: PType,
                   cmp: TDistinctCompare = dcEq,
                   flags: TTypeCmpFlags = {}): bool =
  ## compares two type for equality (modulo type distinction)
  var c = initSameTypeClosure()
  c.cmp = cmp
  c.flags = flags
  if x == y: result = true
  elif x.isNil or y.isNil: result = false
  else: result = sameTypeAux(x, y, c)

proc inheritanceDiff*(a, b: PType): int =
  # | returns: 0 iff `a` == `b`
  # | returns: -x iff `a` is the x'th direct superclass of `b`
  # | returns: +x iff `a` is the x'th direct subclass of `b`
  # | returns: `maxint` iff `a` and `b` are not compatible at all
  if a == b or a.kind == tyError or b.kind == tyError: return 0
  assert a.kind in {tyObject} + skipPtrs
  assert b.kind in {tyObject} + skipPtrs
  var x = a
  result = 0
  while x != nil:
    x = skipTypes(x, skipPtrs)
    if sameObjectTypes(x, b): return
    x = x.baseClass
    dec(result)
  var y = b
  result = 0
  while y != nil:
    y = skipTypes(y, skipPtrs)
    if sameObjectTypes(y, a): return
    y = y.baseClass
    inc(result)
  result = high(int)

proc commonSuperclass*(a, b: PType): PType =
  result = nil
  # quick check: are they the same?
  if sameObjectTypes(a, b): return a

  # simple algorithm: we store all ancestors of 'a' in a ID-set and walk 'b'
  # up until the ID is found:
  assert a.kind == tyObject
  assert b.kind == tyObject
  var x = a
  var ancestors = initIntSet()
  while x != nil:
    x = skipTypes(x, skipPtrs)
    ancestors.incl(x.id)
    x = x.baseClass
  var y = b
  while y != nil:
    var t = y # bug #7818, save type before skip
    y = skipTypes(y, skipPtrs)
    if ancestors.contains(y.id):
      # bug #7818, defer the previous skipTypes
      if t.kind != tyGenericInst: t = y
      return t
    y = y.baseClass

proc lacksMTypeField*(typ: PType): bool {.inline.} =
  (typ.sym != nil and sfPure in typ.sym.flags) or tfFinal in typ.flags

include sizealignoffsetimpl

proc computeSize*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.size

proc getReturnType*(s: PSym): PType =
  # Obtains the return type of a iterator/proc/macro/template
  assert s.kind in skProcKinds
  result = s.typ.returnType

proc getAlign*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.align

proc getSize*(conf: ConfigRef; typ: PType): BiggestInt =
  computeSizeAlign(conf, typ)
  result = typ.size

proc containsGenericTypeIter(t: PType, closure: RootRef): bool =
  case t.kind
  of tyStatic:
    return t.n == nil
  of tyTypeDesc:
    if t.base.kind == tyNone: return true
    if containsGenericTypeIter(t.base, closure): return true
    return false
  of GenericTypes + tyTypeClasses + {tyFromExpr}:
    return true
  else:
    return false

proc containsGenericType*(t: PType): bool =
  result = iterOverType(t, containsGenericTypeIter, nil)

proc containsUnresolvedTypeIter(t: PType, closure: RootRef): bool =
  if tfUnresolved in t.flags: return true
  case t.kind
  of tyStatic:
    return t.n == nil
  of tyTypeDesc:
    if t.base.kind == tyNone: return true
    if containsUnresolvedTypeIter(t.base, closure): return true
    return false
  of tyGenericInvocation, tyGenericParam, tyFromExpr, tyAnything:
    return true
  else:
    return false

proc containsUnresolvedType*(t: PType): bool =
  result = iterOverType(t, containsUnresolvedTypeIter, nil)

proc baseOfDistinct*(t: PType; g: ModuleGraph; idgen: IdGenerator): PType =
  if t.kind == tyDistinct:
    result = t.elementType
  else:
    result = copyType(t, idgen, t.owner)
    copyTypeProps(g, idgen.module, result, t)
    var parent: PType = nil
    var it = result
    while it.kind in {tyPtr, tyRef, tyOwned}:
      parent = it
      it = it.elementType
    if it.kind == tyDistinct and parent != nil:
      parent[0] = it[0]

proc safeInheritanceDiff*(a, b: PType): int =
  # same as inheritanceDiff but checks for tyError:
  if a.kind == tyError or b.kind == tyError:
    result = -1
  else:
    result = inheritanceDiff(a.skipTypes(skipPtrs), b.skipTypes(skipPtrs))

proc compatibleEffectsAux(se, re: PNode): bool =
  if re.isNil: return false
  for r in items(re):
    block search:
      for s in items(se):
        if safeInheritanceDiff(r.typ, s.typ) <= 0:
          break search
      return false
  result = true

proc isDefectException*(t: PType): bool
proc compatibleExceptions(se, re: PNode): bool =
  if re.isNil: return false
  for r in items(re):
    block search:
      if isDefectException(r.typ):
        break search
      for s in items(se):
        if safeInheritanceDiff(r.typ, s.typ) <= 0:
          break search
      return false
  result = true

proc hasIncompatibleEffect(se, re: PNode): bool =
  result = false
  if re.isNil: return false
  for r in items(re):
    for s in items(se):
      if safeInheritanceDiff(r.typ, s.typ) != high(int):
        return true

type
  EffectsCompat* = enum
    efCompat
    efRaisesDiffer
    efRaisesUnknown
    efTagsDiffer
    efTagsUnknown
    efEffectsDelayed
    efTagsIllegal

proc compatibleEffects*(formal, actual: PType): EffectsCompat =
  # for proc type compatibility checking:
  assert formal.kind == tyProc and actual.kind == tyProc
  #if tfEffectSystemWorkaround in actual.flags:
  #  return efCompat

  if formal.n[0].kind != nkEffectList or
     actual.n[0].kind != nkEffectList:
    return efTagsUnknown

  var spec = formal.n[0]
  if spec.len != 0:
    var real = actual.n[0]

    let se = spec[exceptionEffects]
    # if 'se.kind == nkArgList' it is no formal type really, but a
    # computed effect and as such no spec:
    # 'r.msgHandler = if isNil(msgHandler): defaultMsgHandler else: msgHandler'
    if not isNil(se) and se.kind != nkArgList:
      # spec requires some exception or tag, but we don't know anything:
      if real.len == 0: return efRaisesUnknown
      let res = compatibleExceptions(se, real[exceptionEffects])
      if not res: return efRaisesDiffer

    let st = spec[tagEffects]
    if not isNil(st) and st.kind != nkArgList:
      # spec requires some exception or tag, but we don't know anything:
      if real.len == 0: return efTagsUnknown
      let res = compatibleEffectsAux(st, real[tagEffects])
      if not res:
        #if tfEffectSystemWorkaround notin actual.flags:
        return efTagsDiffer

    let sn = spec[forbiddenEffects]
    if not isNil(sn) and sn.kind != nkArgList:
      if 0 == real.len:
        return efTagsUnknown
      elif hasIncompatibleEffect(sn, real[tagEffects]):
        return efTagsIllegal

  for i in 1 ..< min(formal.n.len, actual.n.len):
    if formal.n[i].sym.flags * {sfEffectsDelayed} != actual.n[i].sym.flags * {sfEffectsDelayed}:
      result = efEffectsDelayed
      break

  result = efCompat


proc isCompileTimeOnly*(t: PType): bool {.inline.} =
  result = t.kind in {tyTypeDesc, tyStatic, tyGenericParam}

proc containsCompileTimeOnly*(t: PType): bool =
  if isCompileTimeOnly(t): return true
  for a in t.kids:
    if a != nil and isCompileTimeOnly(a):
      return true
  return false

proc safeSkipTypes*(t: PType, kinds: TTypeKinds): PType =
  ## same as 'skipTypes' but with a simple cycle detector.
  result = t
  var seen = initIntSet()
  while result.kind in kinds and not containsOrIncl(seen, result.id):
    result = skipModifier(result)

type
  OrdinalType* = enum
    NoneLike, IntLike, FloatLike

proc classify*(t: PType): OrdinalType =
  ## for convenient type checking:
  if t == nil:
    result = NoneLike
  else:
    case skipTypes(t, abstractVarRange).kind
    of tyFloat..tyFloat128: result = FloatLike
    of tyInt..tyInt64, tyUInt..tyUInt64, tyBool, tyChar, tyEnum:
      result = IntLike
    else: result = NoneLike

proc skipConv*(n: PNode): PNode =
  result = n
  case n.kind
  of nkObjUpConv, nkObjDownConv, nkChckRange, nkChckRangeF, nkChckRange64:
    # only skip the conversion if it doesn't lose too important information
    # (see bug #1334)
    if n[0].typ.classify == n.typ.classify:
      result = n[0]
  of nkHiddenStdConv, nkHiddenSubConv, nkConv:
    if n[1].typ.classify == n.typ.classify:
      result = n[1]
  else: discard

proc skipHidden*(n: PNode): PNode =
  result = n
  while true:
    case result.kind
    of nkHiddenStdConv, nkHiddenSubConv:
      if result[1].typ.classify == result.typ.classify:
        result = result[1]
      else: break
    of nkHiddenDeref, nkHiddenAddr:
      result = result[0]
    else: break

proc skipConvTakeType*(n: PNode): PNode =
  result = n.skipConv
  result.typ = n.typ

proc isEmptyContainer*(t: PType): bool =
  case t.kind
  of tyUntyped, tyNil: result = true
  of tyArray, tySet, tySequence, tyOpenArray, tyVarargs:
    result = t.elementType.kind == tyEmpty
  of tyGenericInst, tyAlias, tySink: result = isEmptyContainer(t.skipModifier)
  else: result = false

proc takeType*(formal, arg: PType; g: ModuleGraph; idgen: IdGenerator): PType =
  # param: openArray[string] = []
  # [] is an array constructor of length 0 of type string!
  if arg.kind == tyNil:
    # and not (formal.kind == tyProc and formal.callConv == ccClosure):
    result = formal
  elif formal.kind in {tyOpenArray, tyVarargs, tySequence} and
      arg.isEmptyContainer:
    let a = copyType(arg.skipTypes({tyGenericInst, tyAlias}), idgen, arg.owner)
    copyTypeProps(g, idgen.module, a, arg)
    a[ord(arg.kind == tyArray)] = formal[0]
    result = a
  elif formal.kind in {tyTuple, tySet} and arg.kind == formal.kind:
    result = formal
  else:
    result = arg

proc skipHiddenSubConv*(n: PNode; g: ModuleGraph; idgen: IdGenerator): PNode =
  if n.kind == nkHiddenSubConv:
    # param: openArray[string] = []
    # [] is an array constructor of length 0 of type string!
    let formal = n.typ
    result = n[1]
    let arg = result.typ
    let dest = takeType(formal, arg, g, idgen)
    if dest == arg and formal.kind != tyUntyped:
      #echo n.info, " came here for ", formal.typeToString
      result = n
    else:
      result = copyTree(result)
      result.typ = dest
  else:
    result = n

proc getProcConvMismatch*(c: ConfigRef, f, a: PType, rel = isNone): (set[ProcConvMismatch], TTypeRelation) =
  ## Returns a set of the reason of mismatch, and the relation for conversion.
  result[1] = rel
  if tfNoSideEffect in f.flags and tfNoSideEffect notin a.flags:
    # Formal is pure, but actual is not
    result[0].incl pcmNoSideEffect
    result[1] = isNone

  if tfThread in f.flags and a.flags * {tfThread, tfNoSideEffect} == {} and
    optThreadAnalysis in c.globalOptions:
    # noSideEffect implies ``tfThread``!
    result[0].incl pcmNotGcSafe
    result[1] = isNone

  if f.flags * {tfIterator} != a.flags * {tfIterator}:
    # One of them is an iterator so not convertible
    result[0].incl pcmNotIterator
    result[1] = isNone

  if f.callConv != a.callConv:
    # valid to pass a 'nimcall' thingie to 'closure':
    if f.callConv == ccClosure and a.callConv == ccNimCall:
      case result[1]
      of isInferred: result[1] = isInferredConvertible
      of isBothMetaConvertible: result[1] = isBothMetaConvertible
      elif result[1] != isNone: result[1] = isConvertible
      else: result[0].incl pcmDifferentCallConv
    else:
      result[1] = isNone
      result[0].incl pcmDifferentCallConv

proc addPragmaAndCallConvMismatch*(message: var string, formal, actual: PType, conf: ConfigRef) =
  assert formal.kind == tyProc and actual.kind == tyProc
  let (convMismatch, _) = getProcConvMismatch(conf, formal, actual)
  var
    gotPragmas = ""
    expectedPragmas = ""
  for reason in convMismatch:
    case reason
    of pcmDifferentCallConv:
      message.add "\n  Calling convention mismatch: got '{.$1.}', but expected '{.$2.}'." % [$actual.callConv, $formal.callConv]
    of pcmNoSideEffect:
      expectedPragmas.add "noSideEffect, "
    of pcmNotGcSafe:
      expectedPragmas.add "gcsafe, "
    of pcmNotIterator: discard

  if expectedPragmas.len > 0:
    gotPragmas.setLen(max(0, gotPragmas.len - 2)) # Remove ", "
    expectedPragmas.setLen(max(0, expectedPragmas.len - 2)) # Remove ", "
    message.add "\n  Pragma mismatch: got '{.$1.}', but expected '{.$2.}'." % [gotPragmas, expectedPragmas]

proc processPragmaAndCallConvMismatch(msg: var string, formal, actual: PType, conf: ConfigRef) =
  if formal.kind == tyProc and actual.kind == tyProc:
    msg.addPragmaAndCallConvMismatch(formal, actual, conf)
    case compatibleEffects(formal, actual)
    of efCompat: discard
    of efRaisesDiffer:
      msg.add "\n.raise effects differ"
    of efRaisesUnknown:
      msg.add "\n.raise effect is 'can raise any'"
    of efTagsDiffer:
      msg.add "\n.tag effects differ"
    of efTagsUnknown:
      msg.add "\n.tag effect is 'any tag allowed'"
    of efEffectsDelayed:
      msg.add "\n.effectsOf annotations differ"
    of efTagsIllegal:
      msg.add "\n.notTag catched an illegal effect"

proc typeNameAndDesc*(t: PType): string =
  result = typeToString(t)
  let desc = typeToString(t, preferDesc)
  if result != desc:
    result.add(" = ")
    result.add(desc)

proc typeMismatch*(conf: ConfigRef; info: TLineInfo, formal, actual: PType, n: PNode) =
  if formal.kind != tyError and actual.kind != tyError:
    let actualStr = typeToString(actual)
    let formalStr = typeToString(formal)
    let desc = typeToString(formal, preferDesc)
    let x = if formalStr == desc: formalStr else: formalStr & " = " & desc
    let verbose = actualStr == formalStr or optDeclaredLocs in conf.globalOptions
    var msg = "type mismatch:"
    if verbose: msg.add "\n"
    if conf.isDefined("nimLegacyTypeMismatch"):
      msg.add  " got <$1>" % actualStr
    else:
      msg.add  " got '$1' for '$2'" % [actualStr, n.renderTree]
    if verbose:
      msg.addDeclaredLoc(conf, actual)
      msg.add "\n"
    msg.add " but expected '$1'" % x
    if verbose: msg.addDeclaredLoc(conf, formal)
    var a = formal
    var b = actual
    if formal.kind == tyArray and actual.kind == tyArray:
      a = formal[1]
      b = actual[1]
      processPragmaAndCallConvMismatch(msg, a, b, conf)
    elif formal.kind == tySequence and actual.kind == tySequence:
      a = formal[0]
      b = actual[0]
      processPragmaAndCallConvMismatch(msg, a, b, conf)
    else:
      processPragmaAndCallConvMismatch(msg, a, b, conf)
    localError(conf, info, msg)

proc isTupleRecursive(t: PType, cycleDetector: var IntSet): bool =
  if t == nil:
    return false
  if cycleDetector.containsOrIncl(t.id):
    return true
  case t.kind
  of tyTuple:
    result = false
    var cycleDetectorCopy: IntSet
    for a in t.kids:
      cycleDetectorCopy = cycleDetector
      if isTupleRecursive(a, cycleDetectorCopy):
        return true
  of tyRef, tyPtr, tyVar, tyLent, tySink,
      tyArray, tyUncheckedArray, tySequence, tyDistinct:
    return isTupleRecursive(t.elementType, cycleDetector)
  of tyAlias, tyGenericInst:
    return isTupleRecursive(t.skipModifier, cycleDetector)
  else:
    return false

proc isTupleRecursive*(t: PType): bool =
  var cycleDetector = initIntSet()
  isTupleRecursive(t, cycleDetector)

proc isException*(t: PType): bool =
  # check if `y` is object type and it inherits from Exception
  assert(t != nil)

  var t = t.skipTypes(abstractInst)
  while t.kind == tyObject:
    if t.sym != nil and t.sym.magic == mException: return true
    if t.baseClass == nil: break
    t = skipTypes(t.baseClass, abstractPtrs)
  return false

proc isDefectException*(t: PType): bool =
  var t = t.skipTypes(abstractPtrs)
  while t.kind == tyObject:
    if t.sym != nil and t.sym.owner != nil and
        sfSystemModule in t.sym.owner.flags and
        t.sym.name.s == "Defect":
      return true
    if t.baseClass == nil: break
    t = skipTypes(t.baseClass, abstractPtrs)
  return false

proc isDefectOrCatchableError*(t: PType): bool =
  var t = t.skipTypes(abstractPtrs)
  while t.kind == tyObject:
    if t.sym != nil and t.sym.owner != nil and
        sfSystemModule in t.sym.owner.flags and
        (t.sym.name.s == "Defect" or
        t.sym.name.s == "CatchableError"):
      return true
    if t.baseClass == nil: break
    t = skipTypes(t.baseClass, abstractPtrs)
  return false

proc isSinkTypeForParam*(t: PType): bool =
  # a parameter like 'seq[owned T]' must not be used only once, but its
  # elements must, so we detect this case here:
  result = t.skipTypes({tyGenericInst, tyAlias}).kind in {tySink, tyOwned}
  when false:
    if isSinkType(t):
      if t.skipTypes({tyGenericInst, tyAlias}).kind in {tyArray, tyVarargs, tyOpenArray, tySequence}:
        result = false
      else:
        result = true

proc lookupFieldAgain*(ty: PType; field: PSym): PSym =
  result = nil
  var ty = ty
  while ty != nil:
    ty = ty.skipTypes(skipPtrs)
    assert(ty.kind in {tyTuple, tyObject})
    result = lookupInRecord(ty.n, field.name)
    if result != nil: break
    ty = ty.baseClass
  if result == nil: result = field

proc isCharArrayPtr*(t: PType; allowPointerToChar: bool): bool =
  let t = t.skipTypes(abstractInst)
  if t.kind == tyPtr:
    let pointsTo = t.elementType.skipTypes(abstractInst)
    case pointsTo.kind
    of tyUncheckedArray:
      result = pointsTo.elementType.kind == tyChar
    of tyArray:
      result = pointsTo.elementType.kind == tyChar and firstOrd(nil, pointsTo.indexType) == 0 and
        skipTypes(pointsTo.indexType, {tyRange}).kind in {tyInt..tyInt64}
    of tyChar:
      result = allowPointerToChar
    else:
      result = false
  else:
    result = false