1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
|
#
#
# The Nim Compiler
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This file implements the new evaluation engine for Nim code.
## An instruction is 1-3 int32s in memory, it is a register based VM.
import semmacrosanity
import
std/[strutils, tables, parseutils],
msgs, vmdef, vmgen, nimsets, types,
parser, vmdeps, idents, trees, renderer, options, transf,
gorgeimpl, lineinfos, btrees, macrocacheimpl,
modulegraphs, sighashes, int128, vmprofiler
when defined(nimPreviewSlimSystem):
import std/formatfloat
import ast except getstr
from semfold import leValueConv, ordinalValToString
from evaltempl import evalTemplate
from magicsys import getSysType
const
traceCode = defined(nimVMDebug)
when hasFFI:
import evalffi
proc stackTraceAux(c: PCtx; x: PStackFrame; pc: int; recursionLimit=100) =
if x != nil:
if recursionLimit == 0:
var calls = 0
var x = x
while x != nil:
inc calls
x = x.next
msgWriteln(c.config, $calls & " calls omitted\n", {msgNoUnitSep})
return
stackTraceAux(c, x.next, x.comesFrom, recursionLimit-1)
var info = c.debug[pc]
# we now use a format similar to the one in lib/system/excpt.nim
var s = ""
# todo: factor with quotedFilename
if optExcessiveStackTrace in c.config.globalOptions:
s = toFullPath(c.config, info)
else:
s = toFilename(c.config, info)
var line = toLinenumber(info)
var col = toColumn(info)
if line > 0:
s.add('(')
s.add($line)
s.add(", ")
s.add($(col + ColOffset))
s.add(')')
if x.prc != nil:
for k in 1..max(1, 25-s.len): s.add(' ')
s.add(x.prc.name.s)
msgWriteln(c.config, s, {msgNoUnitSep})
proc stackTraceImpl(c: PCtx, tos: PStackFrame, pc: int,
msg: string, lineInfo: TLineInfo, infoOrigin: InstantiationInfo) {.noinline.} =
# noinline to avoid code bloat
msgWriteln(c.config, "stack trace: (most recent call last)", {msgNoUnitSep})
stackTraceAux(c, tos, pc)
let action = if c.mode == emRepl: doRaise else: doNothing
# XXX test if we want 'globalError' for every mode
let lineInfo = if lineInfo == TLineInfo.default: c.debug[pc] else: lineInfo
liMessage(c.config, lineInfo, errGenerated, msg, action, infoOrigin)
when not defined(nimHasCallsitePragma):
{.pragma: callsite.}
template stackTrace(c: PCtx, tos: PStackFrame, pc: int,
msg: string, lineInfo: TLineInfo = TLineInfo.default) {.callsite.} =
stackTraceImpl(c, tos, pc, msg, lineInfo, instantiationInfo(-2, fullPaths = true))
return
proc bailOut(c: PCtx; tos: PStackFrame) =
stackTrace(c, tos, c.exceptionInstr, "unhandled exception: " &
c.currentExceptionA[3].skipColon.strVal &
" [" & c.currentExceptionA[2].skipColon.strVal & "]")
when not defined(nimComputedGoto):
{.pragma: computedGoto.}
proc ensureKind(n: var TFullReg, k: TRegisterKind) {.inline.} =
if n.kind != k:
n = TFullReg(kind: k)
template ensureKind(k: untyped) {.dirty.} =
ensureKind(regs[ra], k)
template decodeB(k: untyped) {.dirty.} =
let rb = instr.regB
ensureKind(k)
template decodeBC(k: untyped) {.dirty.} =
let rb = instr.regB
let rc = instr.regC
ensureKind(k)
template declBC() {.dirty.} =
let rb = instr.regB
let rc = instr.regC
template decodeBImm(k: untyped) {.dirty.} =
let rb = instr.regB
let imm = instr.regC - byteExcess
ensureKind(k)
template decodeBx(k: untyped) {.dirty.} =
let rbx = instr.regBx - wordExcess
ensureKind(k)
template move(a, b: untyped) {.dirty.} =
when defined(gcArc) or defined(gcOrc) or defined(gcAtomicArc):
a = move b
else:
system.shallowCopy(a, b)
# XXX fix minor 'shallowCopy' overloading bug in compiler
proc derefPtrToReg(address: BiggestInt, typ: PType, r: var TFullReg, isAssign: bool): bool =
# nim bug: `isAssign: static bool` doesn't work, giving odd compiler error
template fun(field, typ, rkind) =
if isAssign:
cast[ptr typ](address)[] = typ(r.field)
else:
r.ensureKind(rkind)
let val = cast[ptr typ](address)[]
when typ is SomeInteger | char:
r.field = BiggestInt(val)
else:
r.field = val
return true
## see also typeinfo.getBiggestInt
case typ.kind
of tyChar: fun(intVal, char, rkInt)
of tyInt: fun(intVal, int, rkInt)
of tyInt8: fun(intVal, int8, rkInt)
of tyInt16: fun(intVal, int16, rkInt)
of tyInt32: fun(intVal, int32, rkInt)
of tyInt64: fun(intVal, int64, rkInt)
of tyUInt: fun(intVal, uint, rkInt)
of tyUInt8: fun(intVal, uint8, rkInt)
of tyUInt16: fun(intVal, uint16, rkInt)
of tyUInt32: fun(intVal, uint32, rkInt)
of tyUInt64: fun(intVal, uint64, rkInt) # note: differs from typeinfo.getBiggestInt
of tyFloat: fun(floatVal, float, rkFloat)
of tyFloat32: fun(floatVal, float32, rkFloat)
of tyFloat64: fun(floatVal, float64, rkFloat)
else: return false
proc createStrKeepNode(x: var TFullReg; keepNode=true) =
if x.node.isNil or not keepNode:
x.node = newNode(nkStrLit)
elif x.node.kind == nkNilLit and keepNode:
when defined(useNodeIds):
let id = x.node.id
x.node[] = TNode(kind: nkStrLit)
when defined(useNodeIds):
x.node.id = id
elif x.node.kind notin {nkStrLit..nkTripleStrLit} or
nfAllConst in x.node.flags:
# XXX this is hacky; tests/txmlgen triggers it:
x.node = newNode(nkStrLit)
# It not only hackey, it is also wrong for tgentemplate. The primary
# cause of bugs like these is that the VM does not properly distinguish
# between variable definitions (var foo = e) and variable updates (foo = e).
include vmhooks
template createStr(x) =
x.node = newNode(nkStrLit)
template createSet(x) =
x.node = newNode(nkCurly)
proc moveConst(x: var TFullReg, y: TFullReg) =
x.ensureKind(y.kind)
case x.kind
of rkNone: discard
of rkInt: x.intVal = y.intVal
of rkFloat: x.floatVal = y.floatVal
of rkNode: x.node = y.node
of rkRegisterAddr: x.regAddr = y.regAddr
of rkNodeAddr: x.nodeAddr = y.nodeAddr
# this seems to be the best way to model the reference semantics
# of system.NimNode:
template asgnRef(x, y: untyped) = moveConst(x, y)
proc copyValue(src: PNode): PNode =
if src == nil or nfIsRef in src.flags:
return src
result = newNode(src.kind)
result.info = src.info
result.typ = src.typ
result.flags = src.flags * PersistentNodeFlags
result.comment = src.comment
when defined(useNodeIds):
if result.id == nodeIdToDebug:
echo "COMES FROM ", src.id
case src.kind
of nkCharLit..nkUInt64Lit: result.intVal = src.intVal
of nkFloatLit..nkFloat128Lit: result.floatVal = src.floatVal
of nkSym: result.sym = src.sym
of nkIdent: result.ident = src.ident
of nkStrLit..nkTripleStrLit: result.strVal = src.strVal
else:
newSeq(result.sons, src.len)
for i in 0..<src.len:
result[i] = copyValue(src[i])
proc asgnComplex(x: var TFullReg, y: TFullReg) =
x.ensureKind(y.kind)
case x.kind
of rkNone: discard
of rkInt: x.intVal = y.intVal
of rkFloat: x.floatVal = y.floatVal
of rkNode: x.node = copyValue(y.node)
of rkRegisterAddr: x.regAddr = y.regAddr
of rkNodeAddr: x.nodeAddr = y.nodeAddr
proc fastAsgnComplex(x: var TFullReg, y: TFullReg) =
x.ensureKind(y.kind)
case x.kind
of rkNone: discard
of rkInt: x.intVal = y.intVal
of rkFloat: x.floatVal = y.floatVal
of rkNode: x.node = y.node
of rkRegisterAddr: x.regAddr = y.regAddr
of rkNodeAddr: x.nodeAddr = y.nodeAddr
proc writeField(n: var PNode, x: TFullReg) =
case x.kind
of rkNone: discard
of rkInt:
if n.kind == nkNilLit:
n[] = TNode(kind: nkIntLit) # ideally, `nkPtrLit`
n.intVal = x.intVal
of rkFloat: n.floatVal = x.floatVal
of rkNode: n = copyValue(x.node)
of rkRegisterAddr: writeField(n, x.regAddr[])
of rkNodeAddr: n = x.nodeAddr[]
proc putIntoReg(dest: var TFullReg; n: PNode) =
case n.kind
of nkStrLit..nkTripleStrLit:
dest = TFullReg(kind: rkNode, node: newStrNode(nkStrLit, n.strVal))
of nkIntLit: # use `nkPtrLit` once this is added
if dest.kind == rkNode: dest.node = n
elif n.typ != nil and n.typ.kind in PtrLikeKinds:
dest = TFullReg(kind: rkNode, node: n)
else:
dest = TFullReg(kind: rkInt, intVal: n.intVal)
of {nkCharLit..nkUInt64Lit} - {nkIntLit}:
dest = TFullReg(kind: rkInt, intVal: n.intVal)
of nkFloatLit..nkFloat128Lit:
dest = TFullReg(kind: rkFloat, floatVal: n.floatVal)
else:
dest = TFullReg(kind: rkNode, node: n)
proc regToNode(x: TFullReg): PNode =
case x.kind
of rkNone: result = newNode(nkEmpty)
of rkInt: result = newNode(nkIntLit); result.intVal = x.intVal
of rkFloat: result = newNode(nkFloatLit); result.floatVal = x.floatVal
of rkNode: result = x.node
of rkRegisterAddr: result = regToNode(x.regAddr[])
of rkNodeAddr: result = x.nodeAddr[]
template getstr(a: untyped): untyped =
(if a.kind == rkNode: a.node.strVal else: $chr(int(a.intVal)))
proc pushSafePoint(f: PStackFrame; pc: int) =
f.safePoints.add(pc)
proc popSafePoint(f: PStackFrame) =
discard f.safePoints.pop()
type
ExceptionGoto = enum
ExceptionGotoHandler,
ExceptionGotoFinally,
ExceptionGotoUnhandled
proc findExceptionHandler(c: PCtx, f: PStackFrame, exc: PNode):
tuple[why: ExceptionGoto, where: int] =
let raisedType = exc.typ.skipTypes(abstractPtrs)
while f.safePoints.len > 0:
var pc = f.safePoints.pop()
var matched = false
var pcEndExcept = pc
# Scan the chain of exceptions starting at pc.
# The structure is the following:
# pc - opcExcept, <end of this block>
# - opcExcept, <pattern1>
# - opcExcept, <pattern2>
# ...
# - opcExcept, <patternN>
# - Exception handler body
# - ... more opcExcept blocks may follow
# - ... an optional opcFinally block may follow
#
# Note that the exception handler body already contains a jump to the
# finally block or, if that's not present, to the point where the execution
# should continue.
# Also note that opcFinally blocks are the last in the chain.
while c.code[pc].opcode == opcExcept:
# Where this Except block ends
pcEndExcept = pc + c.code[pc].regBx - wordExcess
inc pc
# A series of opcExcept follows for each exception type matched
while c.code[pc].opcode == opcExcept:
let excIndex = c.code[pc].regBx - wordExcess
let exceptType =
if excIndex > 0: c.types[excIndex].skipTypes(abstractPtrs)
else: nil
# echo typeToString(exceptType), " ", typeToString(raisedType)
# Determine if the exception type matches the pattern
if exceptType.isNil or inheritanceDiff(raisedType, exceptType) <= 0:
matched = true
break
inc pc
# Skip any further ``except`` pattern and find the first instruction of
# the handler body
while c.code[pc].opcode == opcExcept:
inc pc
if matched:
break
# If no handler in this chain is able to catch this exception we check if
# the "parent" chains are able to. If this chain ends with a `finally`
# block we must execute it before continuing.
pc = pcEndExcept
# Where the handler body starts
let pcBody = pc
if matched:
return (ExceptionGotoHandler, pcBody)
elif c.code[pc].opcode == opcFinally:
# The +1 here is here because we don't want to execute it since we've
# already pop'd this statepoint from the stack.
return (ExceptionGotoFinally, pc + 1)
return (ExceptionGotoUnhandled, 0)
proc cleanUpOnReturn(c: PCtx; f: PStackFrame): int =
# Walk up the chain of safepoints and return the PC of the first `finally`
# block we find or -1 if no such block is found.
# Note that the safepoint is removed once the function returns!
result = -1
# Traverse the stack starting from the end in order to execute the blocks in
# the intended order
for i in 1..f.safePoints.len:
var pc = f.safePoints[^i]
# Skip the `except` blocks
while c.code[pc].opcode == opcExcept:
pc += c.code[pc].regBx - wordExcess
if c.code[pc].opcode == opcFinally:
discard f.safePoints.pop
return pc + 1
proc opConv(c: PCtx; dest: var TFullReg, src: TFullReg, desttyp, srctyp: PType): bool =
result = false
if desttyp.kind == tyString:
dest.ensureKind(rkNode)
dest.node = newNode(nkStrLit)
let styp = srctyp.skipTypes(abstractRange)
case styp.kind
of tyEnum:
let n = styp.n
let x = src.intVal.int
if x <% n.len and (let f = n[x].sym; f.position == x):
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
else:
for i in 0..<n.len:
if n[i].kind != nkSym: internalError(c.config, "opConv for enum")
let f = n[i].sym
if f.position == x:
dest.node.strVal = if f.ast.isNil: f.name.s else: f.ast.strVal
return
dest.node.strVal = styp.sym.name.s & " " & $x
of tyInt..tyInt64:
dest.node.strVal = $src.intVal
of tyUInt..tyUInt64:
dest.node.strVal = $uint64(src.intVal)
of tyBool:
dest.node.strVal = if src.intVal == 0: "false" else: "true"
of tyFloat..tyFloat128:
dest.node.strVal = $src.floatVal
of tyString:
dest.node.strVal = src.node.strVal
of tyCstring:
if src.node.kind == nkBracket:
# Array of chars
var strVal = ""
for son in src.node.sons:
let c = char(son.intVal)
if c == '\0': break
strVal.add(c)
dest.node.strVal = strVal
else:
dest.node.strVal = src.node.strVal
of tyChar:
dest.node.strVal = $chr(src.intVal)
else:
internalError(c.config, "cannot convert to string " & desttyp.typeToString)
else:
let desttyp = skipTypes(desttyp, abstractVarRange)
case desttyp.kind
of tyInt..tyInt64:
dest.ensureKind(rkInt)
case skipTypes(srctyp, abstractRange).kind
of tyFloat..tyFloat64:
dest.intVal = int(src.floatVal)
else:
dest.intVal = src.intVal
if toInt128(dest.intVal) < firstOrd(c.config, desttyp) or toInt128(dest.intVal) > lastOrd(c.config, desttyp):
return true
of tyUInt..tyUInt64:
dest.ensureKind(rkInt)
let styp = srctyp.skipTypes(abstractRange) # skip distinct types(dest type could do this too if needed)
case styp.kind
of tyFloat..tyFloat64:
dest.intVal = int(src.floatVal)
else:
let destSize = getSize(c.config, desttyp)
let destDist = (sizeof(dest.intVal) - destSize) * 8
var value = cast[BiggestUInt](src.intVal)
when false:
# this would make uint64(-5'i8) evaluate to 251
# but at runtime, uint64(-5'i8) is 18446744073709551611
# so don't do it
let srcSize = getSize(c.config, styp)
let srcDist = (sizeof(src.intVal) - srcSize) * 8
value = (value shl srcDist) shr srcDist
value = (value shl destDist) shr destDist
dest.intVal = cast[BiggestInt](value)
of tyBool:
dest.ensureKind(rkInt)
dest.intVal =
case skipTypes(srctyp, abstractRange).kind
of tyFloat..tyFloat64: int(src.floatVal != 0.0)
else: int(src.intVal != 0)
of tyFloat..tyFloat64:
dest.ensureKind(rkFloat)
let srcKind = skipTypes(srctyp, abstractRange).kind
case srcKind
of tyInt..tyInt64, tyUInt..tyUInt64, tyEnum, tyBool, tyChar:
dest.floatVal = toBiggestFloat(src.intVal)
elif src.kind == rkInt:
dest.floatVal = toBiggestFloat(src.intVal)
else:
dest.floatVal = src.floatVal
of tyObject:
if srctyp.skipTypes(abstractVarRange).kind != tyObject:
internalError(c.config, "invalid object-to-object conversion")
# A object-to-object conversion is essentially a no-op
moveConst(dest, src)
else:
asgnComplex(dest, src)
proc compile(c: PCtx, s: PSym): int =
result = vmgen.genProc(c, s)
when debugEchoCode: c.echoCode result
#c.echoCode
template handleJmpBack() {.dirty.} =
if c.loopIterations <= 0:
if allowInfiniteLoops in c.features:
c.loopIterations = c.config.maxLoopIterationsVM
else:
msgWriteln(c.config, "stack trace: (most recent call last)", {msgNoUnitSep})
stackTraceAux(c, tos, pc)
globalError(c.config, c.debug[pc], errTooManyIterations % $c.config.maxLoopIterationsVM)
dec(c.loopIterations)
proc recSetFlagIsRef(arg: PNode) =
if arg.kind notin {nkStrLit..nkTripleStrLit}:
arg.flags.incl(nfIsRef)
for i in 0..<arg.safeLen:
arg[i].recSetFlagIsRef
proc setLenSeq(c: PCtx; node: PNode; newLen: int; info: TLineInfo) =
let typ = node.typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc})
let oldLen = node.len
setLen(node.sons, newLen)
if oldLen < newLen:
for i in oldLen..<newLen:
node[i] = getNullValue(c, typ.elementType, info, c.config)
const
errNilAccess = "attempt to access a nil address"
errOverOrUnderflow = "over- or underflow"
errConstantDivisionByZero = "division by zero"
errIllegalConvFromXtoY = "illegal conversion from '$1' to '$2'"
errTooManyIterations = "interpretation requires too many iterations; " &
"if you are sure this is not a bug in your code, compile with `--maxLoopIterationsVM:number` (current value: $1)"
errFieldXNotFound = "node lacks field: "
template maybeHandlePtr(node2: PNode, reg: TFullReg, isAssign2: bool): bool =
let node = node2 # prevent double evaluation
if node.kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
let typ = node.typ
if nfIsPtr in node.flags or (typ != nil and typ.kind == tyPtr):
assert node.kind == nkIntLit, $(node.kind)
assert typ != nil
let typ2 = if typ.kind == tyPtr: typ.elementType else: typ
if not derefPtrToReg(node.intVal, typ2, reg, isAssign = isAssign2):
# tyObject not supported in this context
stackTrace(c, tos, pc, "deref unsupported ptr type: " & $(typeToString(typ), typ.kind))
true
else:
false
template takeAddress(reg, source) =
reg.nodeAddr = addr source
GC_ref source
proc takeCharAddress(c: PCtx, src: PNode, index: BiggestInt, pc: int): TFullReg =
let typ = newType(tyPtr, c.idgen, c.module.owner)
typ.add getSysType(c.graph, c.debug[pc], tyChar)
var node = newNodeIT(nkIntLit, c.debug[pc], typ) # xxx nkPtrLit
node.intVal = cast[int](src.strVal[index].addr)
node.flags.incl nfIsPtr
TFullReg(kind: rkNode, node: node)
proc rawExecute(c: PCtx, start: int, tos: PStackFrame): TFullReg =
result = TFullReg(kind: rkNone)
var pc = start
var tos = tos
# Used to keep track of where the execution is resumed.
var savedPC = -1
var savedFrame: PStackFrame = nil
when defined(gcArc) or defined(gcOrc) or defined(gcAtomicArc):
template updateRegsAlias = discard
template regs: untyped = tos.slots
else:
template updateRegsAlias =
move(regs, tos.slots)
var regs: seq[TFullReg] # alias to tos.slots for performance
updateRegsAlias
#echo "NEW RUN ------------------------"
while true:
#{.computedGoto.}
let instr = c.code[pc]
let ra = instr.regA
when traceCode:
template regDescr(name, r): string =
let kind = if r < regs.len: $regs[r].kind else: ""
let ret = name & ": " & $r & " " & $kind
alignLeft(ret, 15)
echo "PC:$pc $opcode $ra $rb $rc" % [
"pc", $pc, "opcode", alignLeft($c.code[pc].opcode, 15),
"ra", regDescr("ra", ra), "rb", regDescr("rb", instr.regB),
"rc", regDescr("rc", instr.regC)]
if c.config.isVmTrace:
# unlike nimVMDebug, this doesn't require re-compiling nim and is controlled by user code
let info = c.debug[pc]
# other useful variables: c.loopIterations
echo "$# [$#] $#" % [c.config$info, $instr.opcode, c.config.sourceLine(info)]
c.profiler.enter(c, tos)
case instr.opcode
of opcEof: return regs[ra]
of opcRet:
let newPc = c.cleanUpOnReturn(tos)
# Perform any cleanup action before returning
if newPc < 0:
pc = tos.comesFrom
let retVal = regs[0]
tos = tos.next
if tos.isNil:
return retVal
updateRegsAlias
assert c.code[pc].opcode in {opcIndCall, opcIndCallAsgn}
if c.code[pc].opcode == opcIndCallAsgn:
regs[c.code[pc].regA] = retVal
else:
savedPC = pc
savedFrame = tos
# The -1 is needed because at the end of the loop we increment `pc`
pc = newPc - 1
of opcYldYoid: assert false
of opcYldVal: assert false
of opcAsgnInt:
decodeB(rkInt)
if regs[rb].kind == rkInt:
regs[ra].intVal = regs[rb].intVal
else:
stackTrace(c, tos, pc, "opcAsgnInt: got " & $regs[rb].kind)
of opcAsgnFloat:
decodeB(rkFloat)
regs[ra].floatVal = regs[rb].floatVal
of opcCastFloatToInt32:
let rb = instr.regB
ensureKind(rkInt)
regs[ra].intVal = cast[int32](float32(regs[rb].floatVal))
of opcCastFloatToInt64:
let rb = instr.regB
ensureKind(rkInt)
regs[ra].intVal = cast[int64](regs[rb].floatVal)
of opcCastIntToFloat32:
let rb = instr.regB
ensureKind(rkFloat)
regs[ra].floatVal = cast[float32](regs[rb].intVal)
of opcCastIntToFloat64:
let rb = instr.regB
ensureKind(rkFloat)
regs[ra].floatVal = cast[float64](regs[rb].intVal)
of opcCastPtrToInt: # RENAME opcCastPtrOrRefToInt
decodeBImm(rkInt)
case imm
of 1: # PtrLikeKinds
case regs[rb].kind
of rkNode:
regs[ra].intVal = cast[int](regs[rb].node.intVal)
of rkNodeAddr:
regs[ra].intVal = cast[int](regs[rb].nodeAddr)
of rkRegisterAddr:
regs[ra].intVal = cast[int](regs[rb].regAddr)
of rkInt:
regs[ra].intVal = regs[rb].intVal
else:
stackTrace(c, tos, pc, "opcCastPtrToInt: got " & $regs[rb].kind)
of 2: # tyRef
regs[ra].intVal = cast[int](regs[rb].node)
else: assert false, $imm
of opcCastIntToPtr:
let rb = instr.regB
let typ = regs[ra].node.typ
let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
case regs[rb].kind
of rkInt: node2.intVal = regs[rb].intVal
of rkNode:
if regs[rb].node.typ.kind notin PtrLikeKinds:
stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].node.typ: " & $regs[rb].node.typ.kind)
node2.intVal = regs[rb].node.intVal
else: stackTrace(c, tos, pc, "opcCastIntToPtr: regs[rb].kind: " & $regs[rb].kind)
regs[ra].node = node2
of opcAsgnComplex:
asgnComplex(regs[ra], regs[instr.regB])
of opcFastAsgnComplex:
fastAsgnComplex(regs[ra], regs[instr.regB])
of opcAsgnRef:
asgnRef(regs[ra], regs[instr.regB])
of opcNodeToReg:
let ra = instr.regA
let rb = instr.regB
# opcLdDeref might already have loaded it into a register. XXX Let's hope
# this is still correct this way:
if regs[rb].kind != rkNode:
regs[ra] = regs[rb]
else:
assert regs[rb].kind == rkNode
let nb = regs[rb].node
if nb == nil:
stackTrace(c, tos, pc, errNilAccess)
else:
case nb.kind
of nkCharLit..nkUInt64Lit:
ensureKind(rkInt)
regs[ra].intVal = nb.intVal
of nkFloatLit..nkFloat64Lit:
ensureKind(rkFloat)
regs[ra].floatVal = nb.floatVal
else:
ensureKind(rkNode)
regs[ra].node = nb
of opcSlice:
# A bodge, but this takes in `toOpenArray(rb, rc, rc)` and emits
# nkTupleConstr(x, y, z) into the `regs[ra]`. These can later be used for calculating the slice we have taken.
decodeBC(rkNode)
let
collection = regs[ra].node
leftInd = regs[rb].intVal
rightInd = regs[rc].intVal
proc rangeCheck(left, right: BiggestInt, safeLen: BiggestInt) =
if left < 0:
stackTrace(c, tos, pc, formatErrorIndexBound(left, safeLen))
if right > safeLen:
stackTrace(c, tos, pc, formatErrorIndexBound(right, safeLen))
case collection.kind
of nkTupleConstr: # slice of a slice
let safeLen = collection[2].intVal - collection[1].intVal
rangeCheck(leftInd, rightInd, safeLen)
let
leftInd = leftInd + collection[1].intVal # Slice is from the start of the old
rightInd = rightInd + collection[1].intVal
regs[ra].node = newTree(
nkTupleConstr,
collection[0],
newIntNode(nkIntLit, BiggestInt leftInd),
newIntNode(nkIntLit, BiggestInt rightInd)
)
else:
let safeLen = safeArrLen(collection) - 1
rangeCheck(leftInd, rightInd, safeLen)
regs[ra].node = newTree(
nkTupleConstr,
collection,
newIntNode(nkIntLit, BiggestInt leftInd),
newIntNode(nkIntLit, BiggestInt rightInd)
)
of opcLdArr:
# a = b[c]
decodeBC(rkNode)
if regs[rc].intVal > high(int):
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
let idx = regs[rc].intVal.int
let src = regs[rb].node
case src.kind
of nkTupleConstr: # refer to `of opcSlice`
let
left = src[1].intVal
right = src[2].intVal
realIndex = left + idx
if idx in 0..(right - left):
case src[0].kind
of nkStrKinds:
regs[ra].node = newIntNode(nkCharLit, ord src[0].strVal[int realIndex])
of nkBracket:
regs[ra].node = src[0][int realIndex]
else:
stackTrace(c, tos, pc, "opcLdArr internal error")
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
of nkStrLit..nkTripleStrLit:
if idx <% src.strVal.len:
regs[ra].node = newNodeI(nkCharLit, c.debug[pc])
regs[ra].node.intVal = src.strVal[idx].ord
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.strVal.len-1))
elif src.kind notin {nkEmpty..nkFloat128Lit} and idx <% src.len:
regs[ra].node = src[idx]
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.safeLen-1))
of opcLdArrAddr:
# a = addr(b[c])
decodeBC(rkNodeAddr)
if regs[rc].intVal > high(int):
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
let idx = regs[rc].intVal.int
let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
case src.kind
of nkTupleConstr:
let
left = src[1].intVal
right = src[2].intVal
realIndex = left + idx
if idx in 0..(right - left): # Refer to `opcSlice`
case src[0].kind
of nkStrKinds:
regs[ra] = takeCharAddress(c, src[0], realIndex, pc)
of nkBracket:
takeAddress regs[ra], src.sons[0].sons[realIndex]
else:
stackTrace(c, tos, pc, "opcLdArrAddr internal error")
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
else:
if src.kind notin {nkEmpty..nkTripleStrLit} and idx <% src.len:
takeAddress regs[ra], src.sons[idx]
elif src.kind in nkStrKinds and idx <% src.strVal.len:
regs[ra] = takeCharAddress(c, src, idx, pc)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.safeLen-1))
of opcLdStrIdx:
decodeBC(rkInt)
let idx = regs[rc].intVal.int
let s {.cursor.} = regs[rb].node.strVal
if idx <% s.len:
regs[ra].intVal = s[idx].ord
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, s.len-1))
of opcLdStrIdxAddr:
# a = addr(b[c]); similar to opcLdArrAddr
decodeBC(rkNode)
if regs[rc].intVal > high(int):
stackTrace(c, tos, pc, formatErrorIndexBound(regs[rc].intVal, high(int)))
let idx = regs[rc].intVal.int
let s = regs[rb].node.strVal.addr # or `byaddr`
if idx <% s[].len:
regs[ra] = takeCharAddress(c, regs[rb].node, idx, pc)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, s[].len-1))
of opcWrArr:
# a[b] = c
decodeBC(rkNode)
let idx = regs[rb].intVal.int
assert regs[ra].kind == rkNode
let arr = regs[ra].node
case arr.kind
of nkTupleConstr: # refer to `opcSlice`
let
src = arr[0]
left = arr[1].intVal
right = arr[2].intVal
realIndex = left + idx
if idx in 0..(right - left):
case src.kind
of nkStrKinds:
src.strVal[int(realIndex)] = char(regs[rc].intVal)
of nkBracket:
if regs[rc].kind == rkInt:
src[int(realIndex)] = newIntNode(nkIntLit, regs[rc].intVal)
else:
assert regs[rc].kind == rkNode
src[int(realIndex)] = regs[rc].node
else:
stackTrace(c, tos, pc, "opcWrArr internal error")
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, int right))
of {nkStrLit..nkTripleStrLit}:
if idx <% arr.strVal.len:
arr.strVal[idx] = chr(regs[rc].intVal)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.strVal.len-1))
elif idx <% arr.len:
writeField(arr[idx], regs[rc])
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, arr.safeLen-1))
of opcLdObj:
# a = b.c
decodeBC(rkNode)
if rb >= regs.len or regs[rb].kind == rkNone or
(regs[rb].kind == rkNode and regs[rb].node == nil) or
(regs[rb].kind == rkNodeAddr and regs[rb].nodeAddr[] == nil):
stackTrace(c, tos, pc, errNilAccess)
else:
let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
case src.kind
of nkEmpty..nkNilLit:
# for nkPtrLit, this could be supported in the future, use something like:
# derefPtrToReg(src.intVal + offsetof(src.typ, rc), typ_field, regs[ra], isAssign = false)
# where we compute the offset in bytes for field rc
stackTrace(c, tos, pc, errNilAccess & " " & $("kind", src.kind, "typ", typeToString(src.typ), "rc", rc))
of nkObjConstr:
let n = src[rc + 1].skipColon
regs[ra].node = n
of nkTupleConstr:
let n = if src.typ != nil and tfTriggersCompileTime in src.typ.flags:
src[rc]
else:
src[rc].skipColon
regs[ra].node = n
else:
let n = src[rc]
regs[ra].node = n
of opcLdObjAddr:
# a = addr(b.c)
decodeBC(rkNodeAddr)
let src = if regs[rb].kind == rkNode: regs[rb].node else: regs[rb].nodeAddr[]
case src.kind
of nkEmpty..nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
of nkObjConstr:
let n = src.sons[rc + 1]
if n.kind == nkExprColonExpr:
takeAddress regs[ra], n.sons[1]
else:
takeAddress regs[ra], src.sons[rc + 1]
else:
takeAddress regs[ra], src.sons[rc]
of opcWrObj:
# a.b = c
decodeBC(rkNode)
assert regs[ra].node != nil
let shiftedRb = rb + ord(regs[ra].node.kind == nkObjConstr)
let dest = regs[ra].node
if dest.kind == nkNilLit:
stackTrace(c, tos, pc, errNilAccess)
elif dest[shiftedRb].kind == nkExprColonExpr:
writeField(dest[shiftedRb][1], regs[rc])
dest[shiftedRb][1].flags.incl nfSkipFieldChecking
else:
writeField(dest[shiftedRb], regs[rc])
dest[shiftedRb].flags.incl nfSkipFieldChecking
of opcWrStrIdx:
decodeBC(rkNode)
let idx = regs[rb].intVal.int
if idx <% regs[ra].node.strVal.len:
regs[ra].node.strVal[idx] = chr(regs[rc].intVal)
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, regs[ra].node.strVal.len-1))
of opcAddrReg:
decodeB(rkRegisterAddr)
regs[ra].regAddr = addr(regs[rb])
of opcAddrNode:
decodeB(rkNodeAddr)
case regs[rb].kind
of rkNode:
takeAddress regs[ra], regs[rb].node
of rkNodeAddr: # bug #14339
regs[ra].nodeAddr = regs[rb].nodeAddr
else:
stackTrace(c, tos, pc, "limited VM support for 'addr', got kind: " & $regs[rb].kind)
of opcLdDeref:
# a = b[]
let ra = instr.regA
let rb = instr.regB
case regs[rb].kind
of rkNodeAddr:
ensureKind(rkNode)
regs[ra].node = regs[rb].nodeAddr[]
of rkRegisterAddr:
ensureKind(regs[rb].regAddr.kind)
regs[ra] = regs[rb].regAddr[]
of rkNode:
if regs[rb].node.kind == nkRefTy:
regs[ra].node = regs[rb].node[0]
elif not maybeHandlePtr(regs[rb].node, regs[ra], false):
## e.g.: typ.kind = tyObject
ensureKind(rkNode)
regs[ra].node = regs[rb].node
else:
stackTrace(c, tos, pc, errNilAccess & " kind: " & $regs[rb].kind)
of opcWrDeref:
# a[] = c; b unused
let ra = instr.regA
let rc = instr.regC
case regs[ra].kind
of rkNodeAddr:
let n = regs[rc].regToNode
# `var object` parameters are sent as rkNodeAddr. When they are mutated
# vmgen generates opcWrDeref, which means that we must dereference
# twice.
# TODO: This should likely be handled differently in vmgen.
let nAddr = regs[ra].nodeAddr
if nAddr[] == nil: stackTrace(c, tos, pc, "opcWrDeref internal error") # refs bug #16613
if (nfIsRef notin nAddr[].flags and nfIsRef notin n.flags): nAddr[][] = n[]
else: nAddr[] = n
of rkRegisterAddr: regs[ra].regAddr[] = regs[rc]
of rkNode:
# xxx: also check for nkRefTy as in opcLdDeref?
if not maybeHandlePtr(regs[ra].node, regs[rc], true):
regs[ra].node[] = regs[rc].regToNode[]
regs[ra].node.flags.incl nfIsRef
else: stackTrace(c, tos, pc, errNilAccess)
of opcAddInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
sum = bVal +% cVal
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
regs[ra].intVal = sum
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcAddImmInt:
decodeBImm(rkInt)
#message(c.config, c.debug[pc], warnUser, "came here")
#debug regs[rb].node
let
bVal = regs[rb].intVal
cVal = imm
sum = bVal +% cVal
if (sum xor bVal) >= 0 or (sum xor cVal) >= 0:
regs[ra].intVal = sum
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcSubInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
diff = bVal -% cVal
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
regs[ra].intVal = diff
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcSubImmInt:
decodeBImm(rkInt)
let
bVal = regs[rb].intVal
cVal = imm
diff = bVal -% cVal
if (diff xor bVal) >= 0 or (diff xor not cVal) >= 0:
regs[ra].intVal = diff
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcLenSeq:
decodeBImm(rkInt)
#assert regs[rb].kind == nkBracket
let
high = (imm and 1) # discard flags
node = regs[rb].node
if (imm and nimNodeFlag) != 0:
# used by mNLen (NimNode.len)
regs[ra].intVal = regs[rb].node.safeLen - high
else:
case node.kind
of nkTupleConstr: # refer to `of opcSlice`
regs[ra].intVal = node[2].intVal - node[1].intVal + 1 - high
else:
# safeArrLen also return string node len
# used when string is passed as openArray in VM
regs[ra].intVal = node.safeArrLen - high
of opcLenStr:
decodeBImm(rkInt)
assert regs[rb].kind == rkNode
regs[ra].intVal = regs[rb].node.strVal.len - imm
of opcLenCstring:
decodeBImm(rkInt)
assert regs[rb].kind == rkNode
if regs[rb].node.kind == nkNilLit:
regs[ra].intVal = -imm
else:
regs[ra].intVal = regs[rb].node.strVal.cstring.len - imm
of opcIncl:
decodeB(rkNode)
let b = regs[rb].regToNode
if not inSet(regs[ra].node, b):
regs[ra].node.add copyTree(b)
of opcInclRange:
decodeBC(rkNode)
var r = newNode(nkRange)
r.add regs[rb].regToNode
r.add regs[rc].regToNode
regs[ra].node.add r.copyTree
of opcExcl:
decodeB(rkNode)
var b = newNodeIT(nkCurly, regs[ra].node.info, regs[ra].node.typ)
b.add regs[rb].regToNode
var r = diffSets(c.config, regs[ra].node, b)
discardSons(regs[ra].node)
for i in 0..<r.len: regs[ra].node.add r[i]
of opcCard:
decodeB(rkInt)
regs[ra].intVal = nimsets.cardSet(c.config, regs[rb].node)
of opcMulInt:
decodeBC(rkInt)
let
bVal = regs[rb].intVal
cVal = regs[rc].intVal
product = bVal *% cVal
floatProd = toBiggestFloat(bVal) * toBiggestFloat(cVal)
resAsFloat = toBiggestFloat(product)
if resAsFloat == floatProd:
regs[ra].intVal = product
elif 32.0 * abs(resAsFloat - floatProd) <= abs(floatProd):
regs[ra].intVal = product
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcDivInt:
decodeBC(rkInt)
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
else: regs[ra].intVal = regs[rb].intVal div regs[rc].intVal
of opcModInt:
decodeBC(rkInt)
if regs[rc].intVal == 0: stackTrace(c, tos, pc, errConstantDivisionByZero)
else: regs[ra].intVal = regs[rb].intVal mod regs[rc].intVal
of opcAddFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal + regs[rc].floatVal
of opcSubFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal - regs[rc].floatVal
of opcMulFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal * regs[rc].floatVal
of opcDivFloat:
decodeBC(rkFloat)
regs[ra].floatVal = regs[rb].floatVal / regs[rc].floatVal
of opcShrInt:
decodeBC(rkInt)
let b = cast[uint64](regs[rb].intVal)
let c = cast[uint64](regs[rc].intVal)
let a = cast[int64](b shr c)
regs[ra].intVal = a
of opcShlInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal shl regs[rc].intVal
of opcAshrInt:
decodeBC(rkInt)
regs[ra].intVal = ashr(regs[rb].intVal, regs[rc].intVal)
of opcBitandInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal and regs[rc].intVal
of opcBitorInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal or regs[rc].intVal
of opcBitxorInt:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal xor regs[rc].intVal
of opcAddu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal +% regs[rc].intVal
of opcSubu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal -% regs[rc].intVal
of opcMulu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal *% regs[rc].intVal
of opcDivu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal /% regs[rc].intVal
of opcModu:
decodeBC(rkInt)
regs[ra].intVal = regs[rb].intVal %% regs[rc].intVal
of opcEqInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal == regs[rc].intVal)
of opcLeInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <= regs[rc].intVal)
of opcLtInt:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal < regs[rc].intVal)
of opcEqFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal == regs[rc].floatVal)
of opcLeFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal <= regs[rc].floatVal)
of opcLtFloat:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].floatVal < regs[rc].floatVal)
of opcLeu:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <=% regs[rc].intVal)
of opcLtu:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal <% regs[rc].intVal)
of opcEqRef:
var ret = false
decodeBC(rkInt)
template getTyp(n): untyped =
n.typ.skipTypes(abstractInst)
template skipRegisterAddr(n: TFullReg): TFullReg =
var tmp = n
while tmp.kind == rkRegisterAddr:
tmp = tmp.regAddr[]
tmp
proc ptrEquality(n1: ptr PNode, n2: PNode): bool =
## true if n2.intVal represents a ptr equal to n1
let p1 = cast[int](n1)
case n2.kind
of nkNilLit: return p1 == 0
of nkIntLit: # TODO: nkPtrLit
# for example, n1.kind == nkFloatLit (ptr float)
# the problem is that n1.typ == nil so we can't compare n1.typ and n2.typ
# this is the best we can do (pending making sure we assign a valid n1.typ to nodeAddr's)
let t2 = n2.getTyp
return t2.kind in PtrLikeKinds and n2.intVal == p1
else: return false
let rbReg = skipRegisterAddr(regs[rb])
let rcReg = skipRegisterAddr(regs[rc])
if rbReg.kind == rkNodeAddr:
if rcReg.kind == rkNodeAddr:
ret = rbReg.nodeAddr == rcReg.nodeAddr
else:
ret = ptrEquality(rbReg.nodeAddr, rcReg.node)
elif rcReg.kind == rkNodeAddr:
ret = ptrEquality(rcReg.nodeAddr, rbReg.node)
else:
let nb = rbReg.node
let nc = rcReg.node
if nb.kind != nc.kind: discard
elif (nb == nc) or (nb.kind == nkNilLit): ret = true # intentional
elif nb.kind in {nkSym, nkTupleConstr, nkClosure} and nb.typ != nil and nb.typ.kind == tyProc and sameConstant(nb, nc):
ret = true
# this also takes care of procvar's, represented as nkTupleConstr, e.g. (nil, nil)
elif nb.kind == nkIntLit and nc.kind == nkIntLit and nb.intVal == nc.intVal: # TODO: nkPtrLit
let tb = nb.getTyp
let tc = nc.getTyp
ret = tb.kind in PtrLikeKinds and tc.kind == tb.kind
regs[ra].intVal = ord(ret)
of opcEqNimNode:
decodeBC(rkInt)
regs[ra].intVal =
ord(exprStructuralEquivalent(regs[rb].node, regs[rc].node,
strictSymEquality=true))
of opcSameNodeType:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.typ.sameTypeOrNil(regs[rc].node.typ, {ExactTypeDescValues, ExactGenericParams}))
# The types should exactly match which is why we pass `{ExactTypeDescValues..ExactGcSafety}`.
of opcXor:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].intVal != regs[rc].intVal)
of opcNot:
decodeB(rkInt)
assert regs[rb].kind == rkInt
regs[ra].intVal = 1 - regs[rb].intVal
of opcUnaryMinusInt:
decodeB(rkInt)
assert regs[rb].kind == rkInt
let val = regs[rb].intVal
if val != int64.low:
regs[ra].intVal = -val
else:
stackTrace(c, tos, pc, errOverOrUnderflow)
of opcUnaryMinusFloat:
decodeB(rkFloat)
assert regs[rb].kind == rkFloat
regs[ra].floatVal = -regs[rb].floatVal
of opcBitnotInt:
decodeB(rkInt)
assert regs[rb].kind == rkInt
regs[ra].intVal = not regs[rb].intVal
of opcEqStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal == regs[rc].node.strVal)
of opcEqCString:
decodeBC(rkInt)
let bNil = regs[rb].node.kind == nkNilLit
let cNil = regs[rc].node.kind == nkNilLit
regs[ra].intVal = ord((bNil and cNil) or
(not bNil and not cNil and regs[rb].node.strVal == regs[rc].node.strVal))
of opcLeStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal <= regs[rc].node.strVal)
of opcLtStr:
decodeBC(rkInt)
regs[ra].intVal = ord(regs[rb].node.strVal < regs[rc].node.strVal)
of opcLeSet:
decodeBC(rkInt)
regs[ra].intVal = ord(containsSets(c.config, regs[rb].node, regs[rc].node))
of opcEqSet:
decodeBC(rkInt)
regs[ra].intVal = ord(equalSets(c.config, regs[rb].node, regs[rc].node))
of opcLtSet:
decodeBC(rkInt)
let a = regs[rb].node
let b = regs[rc].node
regs[ra].intVal = ord(containsSets(c.config, a, b) and not equalSets(c.config, a, b))
of opcMulSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.intersectSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcPlusSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.unionSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcMinusSet:
decodeBC(rkNode)
createSet(regs[ra])
move(regs[ra].node.sons,
nimsets.diffSets(c.config, regs[rb].node, regs[rc].node).sons)
of opcConcatStr:
decodeBC(rkNode)
createStr regs[ra]
regs[ra].node.strVal = getstr(regs[rb])
for i in rb+1..rb+rc-1:
regs[ra].node.strVal.add getstr(regs[i])
of opcAddStrCh:
decodeB(rkNode)
regs[ra].node.strVal.add(regs[rb].intVal.chr)
of opcAddStrStr:
decodeB(rkNode)
regs[ra].node.strVal.add(regs[rb].node.strVal)
of opcAddSeqElem:
decodeB(rkNode)
if regs[ra].node.kind == nkBracket:
regs[ra].node.add(copyValue(regs[rb].regToNode))
else:
stackTrace(c, tos, pc, errNilAccess)
of opcGetImpl:
decodeB(rkNode)
var a = regs[rb].node
if a.kind == nkVarTy: a = a[0]
if a.kind == nkSym:
regs[ra].node = if a.sym.ast.isNil: newNode(nkNilLit)
else: copyTree(a.sym.ast)
regs[ra].node.flags.incl nfIsRef
else:
stackTrace(c, tos, pc, "node is not a symbol")
of opcGetImplTransf:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node =
if a.sym.ast.isNil:
newNode(nkNilLit)
else:
let ast = a.sym.ast.shallowCopy
for i in 0..<a.sym.ast.len:
ast[i] = a.sym.ast[i]
ast[bodyPos] = transformBody(c.graph, c.idgen, a.sym, {useCache, force})
ast.copyTree()
of opcSymOwner:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node = if a.sym.owner.isNil: newNode(nkNilLit)
else: newSymNode(a.sym.skipGenericOwner)
regs[ra].node.flags.incl nfIsRef
else:
stackTrace(c, tos, pc, "node is not a symbol")
of opcSymIsInstantiationOf:
decodeBC(rkInt)
let a = regs[rb].node
let b = regs[rc].node
if a.kind == nkSym and a.sym.kind in skProcKinds and
b.kind == nkSym and b.sym.kind in skProcKinds:
regs[ra].intVal =
if sfFromGeneric in a.sym.flags and a.sym.instantiatedFrom == b.sym: 1
else: 0
else:
stackTrace(c, tos, pc, "node is not a proc symbol")
of opcEcho:
let rb = instr.regB
template fn(s) = msgWriteln(c.config, s, {msgStdout, msgNoUnitSep})
if rb == 1: fn(regs[ra].node.strVal)
else:
var outp = ""
for i in ra..ra+rb-1:
#if regs[i].kind != rkNode: debug regs[i]
outp.add(regs[i].node.strVal)
fn(outp)
of opcContainsSet:
decodeBC(rkInt)
regs[ra].intVal = ord(inSet(regs[rb].node, regs[rc].regToNode))
of opcParseFloat:
decodeBC(rkInt)
var rcAddr = addr(regs[rc])
if rcAddr.kind == rkRegisterAddr: rcAddr = rcAddr.regAddr
elif regs[rc].kind != rkFloat:
regs[rc] = TFullReg(kind: rkFloat)
let coll = regs[rb].node
case coll.kind
of nkTupleConstr:
let
data = coll[0]
left = coll[1].intVal
right = coll[2].intVal
case data.kind
of nkStrKinds:
regs[ra].intVal = parseBiggestFloat(data.strVal.toOpenArray(int left, int right), rcAddr.floatVal)
of nkBracket:
var s = newStringOfCap(right - left + 1)
for i in left..right:
s.add char data[int i].intVal
regs[ra].intVal = parseBiggestFloat(s, rcAddr.floatVal)
else:
internalError(c.config, c.debug[pc], "opcParseFloat: Incorrectly created openarray")
else:
regs[ra].intVal = parseBiggestFloat(regs[rb].node.strVal, rcAddr.floatVal)
of opcRangeChck:
let rb = instr.regB
let rc = instr.regC
if not (leValueConv(regs[rb].regToNode, regs[ra].regToNode) and
leValueConv(regs[ra].regToNode, regs[rc].regToNode)):
stackTrace(c, tos, pc,
errIllegalConvFromXtoY % [
$regs[ra].regToNode, "[" & $regs[rb].regToNode & ".." & $regs[rc].regToNode & "]"])
of opcIndCall, opcIndCallAsgn:
# dest = call regStart, n; where regStart = fn, arg1, ...
let rb = instr.regB
let rc = instr.regC
let bb = regs[rb].node
if bb.kind == nkNilLit:
stackTrace(c, tos, pc, "attempt to call nil closure")
let isClosure = bb.kind == nkTupleConstr
if isClosure and bb[0].kind == nkNilLit:
stackTrace(c, tos, pc, "attempt to call nil closure")
let prc = if not isClosure: bb.sym else: bb[0].sym
if prc.offset < -1:
# it's a callback:
c.callbacks[-prc.offset-2](
VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
currentException: c.currentExceptionA,
currentLineInfo: c.debug[pc])
)
elif importcCond(c, prc):
if compiletimeFFI notin c.config.features:
globalError(c.config, c.debug[pc], "VM not allowed to do FFI, see `compiletimeFFI`")
# we pass 'tos.slots' instead of 'regs' so that the compiler can keep
# 'regs' in a register:
when hasFFI:
if prc.position - 1 < 0:
globalError(c.config, c.debug[pc],
"VM call invalid: prc.position: " & $prc.position)
let prcValue = c.globals[prc.position-1]
if prcValue.kind == nkEmpty:
globalError(c.config, c.debug[pc], "cannot run " & prc.name.s)
var slots2: TNodeSeq = newSeq[PNode](tos.slots.len)
for i in 0..<tos.slots.len:
slots2[i] = regToNode(tos.slots[i])
let newValue = callForeignFunction(c.config, prcValue, prc.typ, slots2,
rb+1, rc-1, c.debug[pc])
if newValue.kind != nkEmpty:
assert instr.opcode == opcIndCallAsgn
putIntoReg(regs[ra], newValue)
else:
globalError(c.config, c.debug[pc], "VM not built with FFI support")
elif prc.kind != skTemplate:
let newPc = compile(c, prc)
# tricky: a recursion is also a jump back, so we use the same
# logic as for loops:
if newPc < pc: handleJmpBack()
#echo "new pc ", newPc, " calling: ", prc.name.s
var newFrame = PStackFrame(prc: prc, comesFrom: pc, next: tos)
newSeq(newFrame.slots, prc.offset+ord(isClosure))
if not isEmptyType(prc.typ.returnType):
putIntoReg(newFrame.slots[0], getNullValue(c, prc.typ.returnType, prc.info, c.config))
for i in 1..rc-1:
newFrame.slots[i] = regs[rb+i]
if isClosure:
newFrame.slots[rc] = TFullReg(kind: rkNode, node: regs[rb].node[1])
tos = newFrame
updateRegsAlias
# -1 for the following 'inc pc'
pc = newPc-1
else:
# for 'getAst' support we need to support template expansion here:
let genSymOwner = if tos.next != nil and tos.next.prc != nil:
tos.next.prc
else:
c.module
var macroCall = newNodeI(nkCall, c.debug[pc])
macroCall.add(newSymNode(prc))
for i in 1..rc-1:
let node = regs[rb+i].regToNode
node.info = c.debug[pc]
if prc.typ[i].kind notin {tyTyped, tyUntyped}:
node.annotateType(prc.typ[i], c.config)
macroCall.add(node)
var a = evalTemplate(macroCall, prc, genSymOwner, c.config, c.cache, c.templInstCounter, c.idgen)
if a.kind == nkStmtList and a.len == 1: a = a[0]
a.recSetFlagIsRef
ensureKind(rkNode)
regs[ra].node = a
of opcTJmp:
# jump Bx if A != 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal != 0:
inc pc, rbx
of opcFJmp:
# jump Bx if A == 0
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
if regs[ra].intVal == 0:
inc pc, rbx
of opcJmp:
# jump Bx
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcJmpBack:
let rbx = instr.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
handleJmpBack()
of opcBranch:
# we know the next instruction is a 'fjmp':
let branch = c.constants[instr.regBx-wordExcess]
var cond = false
for j in 0..<branch.len - 1:
if overlap(regs[ra].regToNode, branch[j]):
cond = true
break
assert c.code[pc+1].opcode == opcFJmp
inc pc
# we skip this instruction so that the final 'inc(pc)' skips
# the following jump
if not cond:
let instr2 = c.code[pc]
let rbx = instr2.regBx - wordExcess - 1 # -1 for the following 'inc pc'
inc pc, rbx
of opcTry:
let rbx = instr.regBx - wordExcess
tos.pushSafePoint(pc + rbx)
assert c.code[pc+rbx].opcode in {opcExcept, opcFinally}
of opcExcept:
# This opcode is never executed, it only holds information for the
# exception handling routines.
raiseAssert "unreachable"
of opcFinally:
# Pop the last safepoint introduced by a opcTry. This opcode is only
# executed _iff_ no exception was raised in the body of the `try`
# statement hence the need to pop the safepoint here.
doAssert(savedPC < 0)
tos.popSafePoint()
of opcFinallyEnd:
# The control flow may not resume at the next instruction since we may be
# raising an exception or performing a cleanup.
if savedPC >= 0:
pc = savedPC - 1
savedPC = -1
if tos != savedFrame:
tos = savedFrame
updateRegsAlias
of opcRaise:
let raised =
# Empty `raise` statement - reraise current exception
if regs[ra].kind == rkNone:
c.currentExceptionA
else:
regs[ra].node
c.currentExceptionA = raised
# Set the `name` field of the exception
var exceptionNameNode = newStrNode(nkStrLit, c.currentExceptionA.typ.sym.name.s)
if c.currentExceptionA[2].kind == nkExprColonExpr:
exceptionNameNode.typ = c.currentExceptionA[2][1].typ
c.currentExceptionA[2][1] = exceptionNameNode
else:
exceptionNameNode.typ = c.currentExceptionA[2].typ
c.currentExceptionA[2] = exceptionNameNode
c.exceptionInstr = pc
var frame = tos
var jumpTo = findExceptionHandler(c, frame, raised)
while jumpTo.why == ExceptionGotoUnhandled and not frame.next.isNil:
frame = frame.next
jumpTo = findExceptionHandler(c, frame, raised)
case jumpTo.why
of ExceptionGotoHandler:
# Jump to the handler, do nothing when the `finally` block ends.
savedPC = -1
pc = jumpTo.where - 1
if tos != frame:
tos = frame
updateRegsAlias
of ExceptionGotoFinally:
# Jump to the `finally` block first then re-jump here to continue the
# traversal of the exception chain
savedPC = pc
savedFrame = tos
pc = jumpTo.where - 1
if tos != frame:
tos = frame
updateRegsAlias
of ExceptionGotoUnhandled:
# Nobody handled this exception, error out.
bailOut(c, tos)
of opcNew:
ensureKind(rkNode)
let typ = c.types[instr.regBx - wordExcess]
regs[ra].node = getNullValue(c, typ, c.debug[pc], c.config)
regs[ra].node.flags.incl nfIsRef
of opcNewSeq:
let typ = c.types[instr.regBx - wordExcess]
inc pc
ensureKind(rkNode)
let instr2 = c.code[pc]
let count = regs[instr2.regA].intVal.int
regs[ra].node = newNodeI(nkBracket, c.debug[pc])
regs[ra].node.typ = typ
newSeq(regs[ra].node.sons, count)
for i in 0..<count:
regs[ra].node[i] = getNullValue(c, typ.elementType, c.debug[pc], c.config)
of opcNewStr:
decodeB(rkNode)
regs[ra].node = newNodeI(nkStrLit, c.debug[pc])
regs[ra].node.strVal = newString(regs[rb].intVal.int)
of opcLdImmInt:
# dest = immediate value
decodeBx(rkInt)
regs[ra].intVal = rbx
of opcLdNull:
ensureKind(rkNode)
let typ = c.types[instr.regBx - wordExcess]
regs[ra].node = getNullValue(c, typ, c.debug[pc], c.config)
# opcLdNull really is the gist of the VM's problems: should it load
# a fresh null to regs[ra].node or to regs[ra].node[]? This really
# depends on whether regs[ra] represents the variable itself or whether
# it holds the indirection! Due to the way registers are re-used we cannot
# say for sure here! --> The codegen has to deal with it
# via 'genAsgnPatch'.
of opcLdNullReg:
let typ = c.types[instr.regBx - wordExcess]
if typ.skipTypes(abstractInst+{tyRange}-{tyTypeDesc}).kind in {
tyFloat..tyFloat128}:
ensureKind(rkFloat)
regs[ra].floatVal = 0.0
else:
ensureKind(rkInt)
regs[ra].intVal = 0
of opcLdConst:
let rb = instr.regBx - wordExcess
let cnst = c.constants[rb]
if fitsRegister(cnst.typ):
reset(regs[ra])
putIntoReg(regs[ra], cnst)
else:
ensureKind(rkNode)
regs[ra].node = cnst
of opcAsgnConst:
let rb = instr.regBx - wordExcess
let cnst = c.constants[rb]
if fitsRegister(cnst.typ):
putIntoReg(regs[ra], cnst)
else:
ensureKind(rkNode)
regs[ra].node = cnst.copyTree
of opcLdGlobal:
let rb = instr.regBx - wordExcess - 1
ensureKind(rkNode)
regs[ra].node = c.globals[rb]
of opcLdGlobalDerefFFI:
let rb = instr.regBx - wordExcess - 1
let node = c.globals[rb]
let typ = node.typ
doAssert node.kind == nkIntLit, $(node.kind)
if typ.kind == tyPtr:
ensureKind(rkNode)
# use nkPtrLit once this is added
let node2 = newNodeIT(nkIntLit, c.debug[pc], typ)
node2.intVal = cast[ptr int](node.intVal)[]
node2.flags.incl nfIsPtr
regs[ra].node = node2
elif not derefPtrToReg(node.intVal, typ, regs[ra], isAssign = false):
stackTrace(c, tos, pc, "opcLdDeref unsupported type: " & $(typeToString(typ), typ.elementType.kind))
of opcLdGlobalAddrDerefFFI:
let rb = instr.regBx - wordExcess - 1
let node = c.globals[rb]
let typ = node.typ
var node2 = newNodeIT(nkIntLit, node.info, typ)
node2.intVal = node.intVal
node2.flags.incl nfIsPtr
ensureKind(rkNode)
regs[ra].node = node2
of opcLdGlobalAddr:
let rb = instr.regBx - wordExcess - 1
ensureKind(rkNodeAddr)
regs[ra].nodeAddr = addr(c.globals[rb])
of opcRepr:
decodeB(rkNode)
createStr regs[ra]
regs[ra].node.strVal = renderTree(regs[rb].regToNode, {renderNoComments, renderDocComments, renderNonExportedFields})
of opcQuit:
if c.mode in {emRepl, emStaticExpr, emStaticStmt}:
message(c.config, c.debug[pc], hintQuitCalled)
msgQuit(int8(toInt(getOrdValue(regs[ra].regToNode, onError = toInt128(1)))))
else:
return TFullReg(kind: rkNone)
of opcInvalidField:
let msg = regs[ra].node.strVal
let disc = regs[instr.regB].regToNode
let msg2 = formatFieldDefect(msg, $disc)
stackTrace(c, tos, pc, msg2)
of opcSetLenStr:
decodeB(rkNode)
#createStrKeepNode regs[ra]
regs[ra].node.strVal.setLen(regs[rb].intVal.int)
of opcOf:
decodeBC(rkInt)
let typ = c.types[regs[rc].intVal.int]
regs[ra].intVal = ord(inheritanceDiff(regs[rb].node.typ, typ) <= 0)
of opcIs:
decodeBC(rkInt)
let t1 = regs[rb].node.typ.skipTypes({tyTypeDesc})
let t2 = c.types[regs[rc].intVal.int]
# XXX: This should use the standard isOpImpl
let match = if t2.kind == tyUserTypeClass: true
else: sameType(t1, t2)
regs[ra].intVal = ord(match)
of opcSetLenSeq:
decodeB(rkNode)
let newLen = regs[rb].intVal.int
if regs[ra].node.isNil: stackTrace(c, tos, pc, errNilAccess)
else: c.setLenSeq(regs[ra].node, newLen, c.debug[pc])
of opcNarrowS:
decodeB(rkInt)
let min = -(1.BiggestInt shl (rb-1))
let max = (1.BiggestInt shl (rb-1))-1
if regs[ra].intVal < min or regs[ra].intVal > max:
stackTrace(c, tos, pc, "unhandled exception: value out of range")
of opcNarrowU:
decodeB(rkInt)
regs[ra].intVal = regs[ra].intVal and ((1'i64 shl rb)-1)
of opcSignExtend:
# like opcNarrowS, but no out of range possible
decodeB(rkInt)
let imm = 64 - rb
regs[ra].intVal = ashr(regs[ra].intVal shl imm, imm)
of opcIsNil:
decodeB(rkInt)
let node = regs[rb].node
regs[ra].intVal = ord(
# Note that `nfIsRef` + `nkNilLit` represents an allocated
# reference with the value `nil`, so `isNil` should be false!
(node.kind == nkNilLit and nfIsRef notin node.flags) or
(not node.typ.isNil and node.typ.kind == tyProc and
node.typ.callConv == ccClosure and node.safeLen > 0 and
node[0].kind == nkNilLit and node[1].kind == nkNilLit))
of opcNBindSym:
# cannot use this simple check
# if dynamicBindSym notin c.config.features:
# bindSym with static input
decodeBx(rkNode)
regs[ra].node = copyTree(c.constants[rbx])
regs[ra].node.flags.incl nfIsRef
of opcNDynBindSym:
# experimental bindSym
let
rb = instr.regB
rc = instr.regC
idx = int(regs[rb+rc-1].intVal)
callback = c.callbacks[idx]
args = VmArgs(ra: ra, rb: rb, rc: rc, slots: cast[ptr UncheckedArray[TFullReg]](addr regs[0]),
currentException: c.currentExceptionA,
currentLineInfo: c.debug[pc])
callback(args)
regs[ra].node.flags.incl nfIsRef
of opcNChild:
decodeBC(rkNode)
let idx = regs[rc].intVal.int
let src = regs[rb].node
if src.kind in {nkEmpty..nkNilLit}:
stackTrace(c, tos, pc, "cannot get child of node kind: n" & $src.kind)
elif idx >=% src.len:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, src.len-1))
else:
regs[ra].node = src[idx]
of opcNSetChild:
decodeBC(rkNode)
let idx = regs[rb].intVal.int
var dest = regs[ra].node
if nfSem in dest.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
elif dest.kind in {nkEmpty..nkNilLit}:
stackTrace(c, tos, pc, "cannot set child of node kind: n" & $dest.kind)
elif idx >=% dest.len:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, dest.len-1))
else:
dest[idx] = regs[rc].node
of opcNAdd:
decodeBC(rkNode)
var u = regs[rb].node
if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
elif u.kind in {nkEmpty..nkNilLit}:
stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
else:
u.add(regs[rc].node)
regs[ra].node = u
of opcNAddMultiple:
decodeBC(rkNode)
let x = regs[rc].node
var u = regs[rb].node
if nfSem in u.flags and allowSemcheckedAstModification notin c.config.legacyFeatures:
stackTrace(c, tos, pc, "typechecked nodes may not be modified")
elif u.kind in {nkEmpty..nkNilLit}:
stackTrace(c, tos, pc, "cannot add to node kind: n" & $u.kind)
else:
for i in 0..<x.len: u.add(x[i])
regs[ra].node = u
of opcNKind:
decodeB(rkInt)
regs[ra].intVal = ord(regs[rb].node.kind)
c.comesFromHeuristic = regs[rb].node.info
of opcNSymKind:
decodeB(rkInt)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].intVal = ord(a.sym.kind)
else:
stackTrace(c, tos, pc, "node is not a symbol")
c.comesFromHeuristic = regs[rb].node.info
of opcNIntVal:
decodeB(rkInt)
let a = regs[rb].node
if a.kind in {nkCharLit..nkUInt64Lit}:
regs[ra].intVal = a.intVal
elif a.kind == nkSym and a.sym.kind == skEnumField:
regs[ra].intVal = a.sym.position
else:
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
of opcNFloatVal:
decodeB(rkFloat)
let a = regs[rb].node
case a.kind
of nkFloatLit..nkFloat64Lit: regs[ra].floatVal = a.floatVal
else: stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
of opcNSymbol:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkSym:
regs[ra].node = copyNode(a)
else:
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
of opcNIdent:
decodeB(rkNode)
let a = regs[rb].node
if a.kind == nkIdent:
regs[ra].node = copyNode(a)
else:
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
of opcNodeId:
decodeB(rkInt)
when defined(useNodeIds):
regs[ra].intVal = regs[rb].node.id
else:
regs[ra].intVal = -1
of opcNGetType:
let rb = instr.regB
let rc = instr.regC
case rc
of 0:
# getType opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
else:
stackTrace(c, tos, pc, "node has no type")
of 1:
# typeKind opcode:
ensureKind(rkInt)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].intVal = ord(regs[rb].node.typ.kind)
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].intVal = ord(regs[rb].node.sym.typ.kind)
#else:
# stackTrace(c, tos, pc, "node has no type")
of 2:
# getTypeInst opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeInstToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
else:
stackTrace(c, tos, pc, "node has no type")
else:
# getTypeImpl opcode:
ensureKind(rkNode)
if regs[rb].kind == rkNode and regs[rb].node.typ != nil:
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.typ, c.debug[pc], c.idgen)
elif regs[rb].kind == rkNode and regs[rb].node.kind == nkSym and regs[rb].node.sym.typ != nil:
regs[ra].node = opMapTypeImplToAst(c.cache, regs[rb].node.sym.typ, c.debug[pc], c.idgen)
else:
stackTrace(c, tos, pc, "node has no type")
of opcNGetSize:
decodeBImm(rkInt)
let n = regs[rb].node
case imm
of 0: # size
if n.typ == nil:
stackTrace(c, tos, pc, "node has no type")
else:
regs[ra].intVal = getSize(c.config, n.typ)
of 1: # align
if n.typ == nil:
stackTrace(c, tos, pc, "node has no type")
else:
regs[ra].intVal = getAlign(c.config, n.typ)
else: # offset
if n.kind != nkSym:
stackTrace(c, tos, pc, "node is not a symbol")
elif n.sym.kind != skField:
stackTrace(c, tos, pc, "symbol is not a field (nskField)")
else:
regs[ra].intVal = n.sym.offset
of opcNStrVal:
decodeB(rkNode)
createStr regs[ra]
let a = regs[rb].node
case a.kind
of nkStrLit..nkTripleStrLit:
regs[ra].node.strVal = a.strVal
of nkCommentStmt:
regs[ra].node.strVal = a.comment
of nkIdent:
regs[ra].node.strVal = a.ident.s
of nkSym:
regs[ra].node.strVal = a.sym.name.s
else:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
of opcNSigHash:
decodeB(rkNode)
createStr regs[ra]
if regs[rb].node.kind != nkSym:
stackTrace(c, tos, pc, "node is not a symbol")
else:
regs[ra].node.strVal = $sigHash(regs[rb].node.sym, c.config)
of opcSlurp:
decodeB(rkNode)
createStr regs[ra]
regs[ra].node.strVal = opSlurp(regs[rb].node.strVal, c.debug[pc],
c.module, c.config)
of opcGorge:
decodeBC(rkNode)
inc pc
let rd = c.code[pc].regA
createStr regs[ra]
if defined(nimsuggest) or c.config.cmd == cmdCheck:
discard "don't run staticExec for 'nim suggest'"
regs[ra].node.strVal = ""
else:
when defined(nimcore):
regs[ra].node.strVal = opGorge(regs[rb].node.strVal,
regs[rc].node.strVal, regs[rd].node.strVal,
c.debug[pc], c.config)[0]
else:
regs[ra].node.strVal = ""
globalError(c.config, c.debug[pc], "VM is not built with 'gorge' support")
of opcNError, opcNWarning, opcNHint:
decodeB(rkNode)
let a = regs[ra].node
let b = regs[rb].node
let info = if b.kind == nkNilLit: c.debug[pc] else: b.info
if instr.opcode == opcNError:
stackTrace(c, tos, pc, a.strVal, info)
elif instr.opcode == opcNWarning:
message(c.config, info, warnUser, a.strVal)
elif instr.opcode == opcNHint:
message(c.config, info, hintUser, a.strVal)
of opcParseExprToAst:
decodeBC(rkNode)
var error: string = ""
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
regs[rc].node.strVal, 0,
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
if error.len == 0 and msg <= errMax:
error = formatMsg(conf, info, msg, arg))
regs[ra].node = newNode(nkEmpty)
if error.len > 0:
c.errorFlag = error
elif ast.len != 1:
c.errorFlag = formatMsg(c.config, c.debug[pc], errGenerated,
"expected expression, but got multiple statements")
else:
regs[ra].node = ast[0]
of opcParseStmtToAst:
decodeBC(rkNode)
var error: string = ""
let ast = parseString(regs[rb].node.strVal, c.cache, c.config,
regs[rc].node.strVal, 0,
proc (conf: ConfigRef; info: TLineInfo; msg: TMsgKind; arg: string) =
if error.len == 0 and msg <= errMax:
error = formatMsg(conf, info, msg, arg))
if error.len > 0:
c.errorFlag = error
regs[ra].node = newNode(nkEmpty)
else:
regs[ra].node = ast
of opcQueryErrorFlag:
createStr regs[ra]
regs[ra].node.strVal = c.errorFlag
c.errorFlag.setLen 0
of opcCallSite:
ensureKind(rkNode)
if c.callsite != nil: regs[ra].node = c.callsite
else: stackTrace(c, tos, pc, errFieldXNotFound & "callsite")
of opcNGetLineInfo:
decodeBImm(rkNode)
let n = regs[rb].node
case imm
of 0: # getFile
regs[ra].node = newStrNode(nkStrLit, toFullPath(c.config, n.info))
of 1: # getLine
regs[ra].node = newIntNode(nkIntLit, n.info.line.int)
of 2: # getColumn
regs[ra].node = newIntNode(nkIntLit, n.info.col.int)
else:
internalAssert c.config, false
regs[ra].node.info = n.info
regs[ra].node.typ = n.typ
of opcNCopyLineInfo:
decodeB(rkNode)
regs[ra].node.info = regs[rb].node.info
of opcNSetLineInfoLine:
decodeB(rkNode)
regs[ra].node.info.line = regs[rb].intVal.uint16
of opcNSetLineInfoColumn:
decodeB(rkNode)
regs[ra].node.info.col = regs[rb].intVal.int16
of opcNSetLineInfoFile:
decodeB(rkNode)
regs[ra].node.info.fileIndex =
fileInfoIdx(c.config, RelativeFile regs[rb].node.strVal)
of opcEqIdent:
decodeBC(rkInt)
# aliases for shorter and easier to understand code below
var aNode = regs[rb].node
var bNode = regs[rc].node
# Skipping both, `nkPostfix` and `nkAccQuoted` for both
# arguments. `nkPostfix` exists only to tag exported symbols
# and therefor it can be safely skipped. Nim has no postfix
# operator. `nkAccQuoted` is used to quote an identifier that
# wouldn't be allowed to use in an unquoted context.
if aNode.kind == nkPostfix:
aNode = aNode[1]
if aNode.kind == nkAccQuoted:
aNode = aNode[0]
if bNode.kind == nkPostfix:
bNode = bNode[1]
if bNode.kind == nkAccQuoted:
bNode = bNode[0]
# These vars are of type `cstring` to prevent unnecessary string copy.
var aStrVal: cstring = nil
var bStrVal: cstring = nil
# extract strVal from argument ``a``
case aNode.kind
of nkStrLit..nkTripleStrLit:
aStrVal = aNode.strVal.cstring
of nkIdent:
aStrVal = aNode.ident.s.cstring
of nkSym:
aStrVal = aNode.sym.name.s.cstring
of nkOpenSymChoice, nkClosedSymChoice:
aStrVal = aNode[0].sym.name.s.cstring
else:
discard
# extract strVal from argument ``b``
case bNode.kind
of nkStrLit..nkTripleStrLit:
bStrVal = bNode.strVal.cstring
of nkIdent:
bStrVal = bNode.ident.s.cstring
of nkSym:
bStrVal = bNode.sym.name.s.cstring
of nkOpenSymChoice, nkClosedSymChoice:
bStrVal = bNode[0].sym.name.s.cstring
else:
discard
regs[ra].intVal =
if aStrVal != nil and bStrVal != nil:
ord(idents.cmpIgnoreStyle(aStrVal, bStrVal, high(int)) == 0)
else:
0
of opcStrToIdent:
decodeB(rkNode)
if regs[rb].node.kind notin {nkStrLit..nkTripleStrLit}:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
else:
regs[ra].node = newNodeI(nkIdent, c.debug[pc])
regs[ra].node.ident = getIdent(c.cache, regs[rb].node.strVal)
regs[ra].node.flags.incl nfIsRef
of opcSetType:
let typ = c.types[instr.regBx - wordExcess]
if regs[ra].kind != rkNode:
let temp = regToNode(regs[ra])
ensureKind(rkNode)
regs[ra].node = temp
regs[ra].node.info = c.debug[pc]
regs[ra].node.typ = typ
of opcConv:
let rb = instr.regB
inc pc
let desttyp = c.types[c.code[pc].regBx - wordExcess]
inc pc
let srctyp = c.types[c.code[pc].regBx - wordExcess]
if opConv(c, regs[ra], regs[rb], desttyp, srctyp):
stackTrace(c, tos, pc,
errIllegalConvFromXtoY % [
typeToString(srctyp), typeToString(desttyp)])
of opcCast:
let rb = instr.regB
inc pc
let desttyp = c.types[c.code[pc].regBx - wordExcess]
inc pc
let srctyp = c.types[c.code[pc].regBx - wordExcess]
when hasFFI:
let dest = fficast(c.config, regs[rb].node, desttyp)
# todo: check whether this is correct
# asgnRef(regs[ra], dest)
putIntoReg(regs[ra], dest)
else:
globalError(c.config, c.debug[pc], "cannot evaluate cast")
of opcNSetIntVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkCharLit..nkUInt64Lit} and
regs[rb].kind in {rkInt}:
dest.intVal = regs[rb].intVal
elif dest.kind == nkSym and dest.sym.kind == skEnumField:
stackTrace(c, tos, pc, "`intVal` cannot be changed for an enum symbol.")
else:
stackTrace(c, tos, pc, errFieldXNotFound & "intVal")
of opcNSetFloatVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkFloatLit..nkFloat64Lit} and
regs[rb].kind in {rkFloat}:
dest.floatVal = regs[rb].floatVal
else:
stackTrace(c, tos, pc, errFieldXNotFound & "floatVal")
of opcNSetSymbol:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind == nkSym and regs[rb].node.kind == nkSym:
dest.sym = regs[rb].node.sym
else:
stackTrace(c, tos, pc, errFieldXNotFound & "symbol")
of opcNSetIdent:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind == nkIdent and regs[rb].node.kind == nkIdent:
dest.ident = regs[rb].node.ident
else:
stackTrace(c, tos, pc, errFieldXNotFound & "ident")
of opcNSetStrVal:
decodeB(rkNode)
var dest = regs[ra].node
if dest.kind in {nkStrLit..nkTripleStrLit} and
regs[rb].kind in {rkNode}:
dest.strVal = regs[rb].node.strVal
elif dest.kind == nkCommentStmt and regs[rb].kind in {rkNode}:
dest.comment = regs[rb].node.strVal
else:
stackTrace(c, tos, pc, errFieldXNotFound & "strVal")
of opcNNewNimNode:
decodeBC(rkNode)
var k = regs[rb].intVal
if k < 0 or k > ord(high(TNodeKind)):
internalError(c.config, c.debug[pc],
"request to create a NimNode of invalid kind")
let cc = regs[rc].node
let x = newNodeI(TNodeKind(int(k)),
if cc.kind != nkNilLit:
cc.info
elif c.comesFromHeuristic.line != 0'u16:
c.comesFromHeuristic
elif c.callsite != nil and c.callsite.safeLen > 1:
c.callsite[1].info
else:
c.debug[pc])
x.flags.incl nfIsRef
# prevent crashes in the compiler resulting from wrong macros:
if x.kind == nkIdent: x.ident = c.cache.emptyIdent
regs[ra].node = x
of opcNCopyNimNode:
decodeB(rkNode)
regs[ra].node = copyNode(regs[rb].node)
of opcNCopyNimTree:
decodeB(rkNode)
regs[ra].node = copyTree(regs[rb].node)
of opcNDel:
decodeBC(rkNode)
let bb = regs[rb].intVal.int
for i in 0..<regs[rc].intVal.int:
delSon(regs[ra].node, bb)
of opcGenSym:
decodeBC(rkNode)
let k = regs[rb].intVal
let name = if regs[rc].node.strVal.len == 0: ":tmp"
else: regs[rc].node.strVal
if k < 0 or k > ord(high(TSymKind)):
internalError(c.config, c.debug[pc], "request to create symbol of invalid kind")
var sym = newSym(k.TSymKind, getIdent(c.cache, name), c.idgen, c.module.owner, c.debug[pc])
incl(sym.flags, sfGenSym)
regs[ra].node = newSymNode(sym)
regs[ra].node.flags.incl nfIsRef
of opcNccValue:
decodeB(rkInt)
let destKey {.cursor.} = regs[rb].node.strVal
regs[ra].intVal = getOrDefault(c.graph.cacheCounters, destKey)
of opcNccInc:
let g = c.graph
declBC()
let destKey {.cursor.} = regs[rb].node.strVal
let by = regs[rc].intVal
let v = getOrDefault(g.cacheCounters, destKey)
g.cacheCounters[destKey] = v+by
recordInc(c, c.debug[pc], destKey, by)
of opcNcsAdd:
let g = c.graph
declBC()
let destKey {.cursor.} = regs[rb].node.strVal
let val = regs[rc].node
if not contains(g.cacheSeqs, destKey):
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
else:
g.cacheSeqs[destKey].add val
recordAdd(c, c.debug[pc], destKey, val)
of opcNcsIncl:
let g = c.graph
declBC()
let destKey {.cursor.} = regs[rb].node.strVal
let val = regs[rc].node
if not contains(g.cacheSeqs, destKey):
g.cacheSeqs[destKey] = newTree(nkStmtList, val)
else:
block search:
for existing in g.cacheSeqs[destKey]:
if exprStructuralEquivalent(existing, val, strictSymEquality=true):
break search
g.cacheSeqs[destKey].add val
recordIncl(c, c.debug[pc], destKey, val)
of opcNcsLen:
let g = c.graph
decodeB(rkInt)
let destKey {.cursor.} = regs[rb].node.strVal
regs[ra].intVal =
if contains(g.cacheSeqs, destKey): g.cacheSeqs[destKey].len else: 0
of opcNcsAt:
let g = c.graph
decodeBC(rkNode)
let idx = regs[rc].intVal
let destKey {.cursor.} = regs[rb].node.strVal
if contains(g.cacheSeqs, destKey) and idx <% g.cacheSeqs[destKey].len:
regs[ra].node = g.cacheSeqs[destKey][idx.int]
else:
stackTrace(c, tos, pc, formatErrorIndexBound(idx, g.cacheSeqs[destKey].len-1))
of opcNctPut:
let g = c.graph
let destKey {.cursor.} = regs[ra].node.strVal
let key {.cursor.} = regs[instr.regB].node.strVal
let val = regs[instr.regC].node
if not contains(g.cacheTables, destKey):
g.cacheTables[destKey] = initBTree[string, PNode]()
if not contains(g.cacheTables[destKey], key):
g.cacheTables[destKey].add(key, val)
recordPut(c, c.debug[pc], destKey, key, val)
else:
stackTrace(c, tos, pc, "key already exists: " & key)
of opcNctLen:
let g = c.graph
decodeB(rkInt)
let destKey {.cursor.} = regs[rb].node.strVal
regs[ra].intVal =
if contains(g.cacheTables, destKey): g.cacheTables[destKey].len else: 0
of opcNctGet:
let g = c.graph
decodeBC(rkNode)
let destKey {.cursor.} = regs[rb].node.strVal
let key {.cursor.} = regs[rc].node.strVal
if contains(g.cacheTables, destKey):
if contains(g.cacheTables[destKey], key):
regs[ra].node = getOrDefault(g.cacheTables[destKey], key)
else:
stackTrace(c, tos, pc, "key does not exist: " & key)
else:
stackTrace(c, tos, pc, "key does not exist: " & destKey)
of opcNctHasNext:
let g = c.graph
decodeBC(rkInt)
let destKey {.cursor.} = regs[rb].node.strVal
regs[ra].intVal =
if g.cacheTables.contains(destKey):
ord(btrees.hasNext(g.cacheTables[destKey], regs[rc].intVal.int))
else:
0
of opcNctNext:
let g = c.graph
decodeBC(rkNode)
let destKey {.cursor.} = regs[rb].node.strVal
let index = regs[rc].intVal
if contains(g.cacheTables, destKey):
let (k, v, nextIndex) = btrees.next(g.cacheTables[destKey], index.int)
regs[ra].node = newTree(nkTupleConstr, newStrNode(k, c.debug[pc]), v,
newIntNode(nkIntLit, nextIndex))
else:
stackTrace(c, tos, pc, "key does not exist: " & destKey)
of opcTypeTrait:
# XXX only supports 'name' for now; we can use regC to encode the
# type trait operation
decodeB(rkNode)
var typ = regs[rb].node.typ
internalAssert c.config, typ != nil
while typ.kind == tyTypeDesc and typ.hasElementType: typ = typ.skipModifier
createStr regs[ra]
regs[ra].node.strVal = typ.typeToString(preferExported)
c.profiler.leave(c)
inc pc
proc execute(c: PCtx, start: int): PNode =
var tos = PStackFrame(prc: nil, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.regInfo.len)
result = rawExecute(c, start, tos).regToNode
proc execProc*(c: PCtx; sym: PSym; args: openArray[PNode]): PNode =
c.loopIterations = c.config.maxLoopIterationsVM
if sym.kind in routineKinds:
if sym.typ.paramsLen != args.len:
result = nil
localError(c.config, sym.info,
"NimScript: expected $# arguments, but got $#" % [
$(sym.typ.paramsLen), $args.len])
else:
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.offset
newSeq(tos.slots, maxSlots)
# setup parameters:
if not isEmptyType(sym.typ.returnType) or sym.kind == skMacro:
putIntoReg(tos.slots[0], getNullValue(c, sym.typ.returnType, sym.info, c.config))
# XXX We could perform some type checking here.
for i in 0..<sym.typ.paramsLen:
putIntoReg(tos.slots[i+1], args[i])
result = rawExecute(c, start, tos).regToNode
else:
result = nil
localError(c.config, sym.info,
"NimScript: attempt to call non-routine: " & sym.name.s)
proc evalStmt*(c: PCtx, n: PNode) =
let n = transformExpr(c.graph, c.idgen, c.module, n)
let start = genStmt(c, n)
# execute new instructions; this redundant opcEof check saves us lots
# of allocations in 'execute':
if c.code[start].opcode != opcEof:
discard execute(c, start)
proc evalExpr*(c: PCtx, n: PNode): PNode =
# deadcode
# `nim --eval:"expr"` might've used it at some point for idetools; could
# be revived for nimsuggest
let n = transformExpr(c.graph, c.idgen, c.module, n)
let start = genExpr(c, n)
assert c.code[start].opcode != opcEof
result = execute(c, start)
proc getGlobalValue*(c: PCtx; s: PSym): PNode =
internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
result = c.globals[s.position-1]
proc setGlobalValue*(c: PCtx; s: PSym, val: PNode) =
## Does not do type checking so ensure the `val` matches the `s.typ`
internalAssert c.config, s.kind in {skLet, skVar} and sfGlobal in s.flags
c.globals[s.position-1] = val
include vmops
proc setupGlobalCtx*(module: PSym; graph: ModuleGraph; idgen: IdGenerator) =
if graph.vm.isNil:
graph.vm = newCtx(module, graph.cache, graph, idgen)
registerAdditionalOps(PCtx graph.vm)
else:
refresh(PCtx graph.vm, module, idgen)
proc setupEvalGen*(graph: ModuleGraph; module: PSym; idgen: IdGenerator): PPassContext =
#var c = newEvalContext(module, emRepl)
#c.features = {allowCast, allowInfiniteLoops}
#pushStackFrame(c, newStackFrame())
# XXX produce a new 'globals' environment here:
setupGlobalCtx(module, graph, idgen)
result = PCtx graph.vm
proc interpreterCode*(c: PPassContext, n: PNode): PNode =
let c = PCtx(c)
# don't eval errornous code:
if c.oldErrorCount == c.config.errorCounter:
evalStmt(c, n)
result = newNodeI(nkEmpty, n.info)
else:
result = n
c.oldErrorCount = c.config.errorCounter
proc evalConstExprAux(module: PSym; idgen: IdGenerator;
g: ModuleGraph; prc: PSym, n: PNode,
mode: TEvalMode): PNode =
when defined(nimsuggest):
if g.config.expandDone():
return n
#if g.config.errorCounter > 0: return n
let n = transformExpr(g, idgen, module, n)
setupGlobalCtx(module, g, idgen)
var c = PCtx g.vm
let oldMode = c.mode
c.mode = mode
let start = genExpr(c, n, requiresValue = mode!=emStaticStmt)
if c.code[start].opcode == opcEof: return newNodeI(nkEmpty, n.info)
assert c.code[start].opcode != opcEof
when debugEchoCode: c.echoCode start
var tos = PStackFrame(prc: prc, comesFrom: 0, next: nil)
newSeq(tos.slots, c.prc.regInfo.len)
#for i in 0..<c.prc.regInfo.len: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos).regToNode
if result.info.col < 0: result.info = n.info
c.mode = oldMode
proc evalConstExpr*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode): PNode =
result = evalConstExprAux(module, idgen, g, nil, e, emConst)
proc evalStaticExpr*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode, prc: PSym): PNode =
result = evalConstExprAux(module, idgen, g, prc, e, emStaticExpr)
proc evalStaticStmt*(module: PSym; idgen: IdGenerator; g: ModuleGraph; e: PNode, prc: PSym) =
discard evalConstExprAux(module, idgen, g, prc, e, emStaticStmt)
proc setupCompileTimeVar*(module: PSym; idgen: IdGenerator; g: ModuleGraph; n: PNode) =
discard evalConstExprAux(module, idgen, g, nil, n, emStaticStmt)
proc prepareVMValue(arg: PNode): PNode =
## strip nkExprColonExpr from tuple values recursively. That is how
## they are expected to be stored in the VM.
# Early abort without copy. No transformation takes place.
if arg.kind in nkLiterals:
return arg
if arg.kind == nkExprColonExpr and arg[0].typ != nil and
arg[0].typ.sym != nil and arg[0].typ.sym.magic == mPNimrodNode:
# Poor mans way of protecting static NimNodes
# XXX: Maybe we need a nkNimNode?
return arg
result = copyNode(arg)
if arg.kind == nkTupleConstr:
for child in arg:
if child.kind == nkExprColonExpr:
result.add prepareVMValue(child[1])
else:
result.add prepareVMValue(child)
else:
for child in arg:
result.add prepareVMValue(child)
proc setupMacroParam(x: PNode, typ: PType): TFullReg =
case typ.kind
of tyStatic:
result = TFullReg(kind: rkNone)
putIntoReg(result, prepareVMValue(x))
else:
var n = x
if n.kind in {nkHiddenSubConv, nkHiddenStdConv}: n = n[1]
n.flags.incl nfIsRef
n.typ = x.typ
result = TFullReg(kind: rkNode, node: n)
iterator genericParamsInMacroCall*(macroSym: PSym, call: PNode): (PSym, PNode) =
let gp = macroSym.ast[genericParamsPos]
for i in 0..<gp.len:
let genericParam = gp[i].sym
let posInCall = macroSym.typ.signatureLen + i
if posInCall < call.len:
yield (genericParam, call[posInCall])
# to prevent endless recursion in macro instantiation
const evalMacroLimit = 1000
#proc errorNode(idgen: IdGenerator; owner: PSym, n: PNode): PNode =
# result = newNodeI(nkEmpty, n.info)
# result.typ = newType(tyError, idgen, owner)
# result.typ.flags.incl tfCheckedForDestructor
proc evalMacroCall*(module: PSym; idgen: IdGenerator; g: ModuleGraph; templInstCounter: ref int;
n, nOrig: PNode, sym: PSym): PNode =
#if g.config.errorCounter > 0: return errorNode(idgen, module, n)
# XXX globalError() is ugly here, but I don't know a better solution for now
inc(g.config.evalMacroCounter)
if g.config.evalMacroCounter > evalMacroLimit:
globalError(g.config, n.info, "macro instantiation too nested")
# immediate macros can bypass any type and arity checking so we check the
# arity here too:
let sl = sym.typ.signatureLen
if sl > n.safeLen and sl > 1:
globalError(g.config, n.info, "in call '$#' got $#, but expected $# argument(s)" % [
n.renderTree, $(n.safeLen-1), $(sym.typ.paramsLen)])
setupGlobalCtx(module, g, idgen)
var c = PCtx g.vm
let oldMode = c.mode
c.mode = emStaticStmt
c.comesFromHeuristic.line = 0'u16
c.callsite = nOrig
c.templInstCounter = templInstCounter
let start = genProc(c, sym)
var tos = PStackFrame(prc: sym, comesFrom: 0, next: nil)
let maxSlots = sym.offset
newSeq(tos.slots, maxSlots)
# setup arguments:
var L = n.safeLen
if L == 0: L = 1
# This is wrong for tests/reject/tind1.nim where the passed 'else' part
# doesn't end up in the parameter:
#InternalAssert tos.slots.len >= L
# return value:
tos.slots[0] = TFullReg(kind: rkNode, node: newNodeI(nkEmpty, n.info))
# setup parameters:
for i, param in paramTypes(sym.typ):
tos.slots[i-FirstParamAt+1] = setupMacroParam(n[i-FirstParamAt+1], param)
let gp = sym.ast[genericParamsPos]
for i in 0..<gp.len:
let idx = sym.typ.signatureLen + i
if idx < n.len:
tos.slots[idx] = setupMacroParam(n[idx], gp[i].sym.typ)
else:
dec(g.config.evalMacroCounter)
c.callsite = nil
localError(c.config, n.info, "expected " & $gp.len &
" generic parameter(s)")
# temporary storage:
#for i in L..<maxSlots: tos.slots[i] = newNode(nkEmpty)
result = rawExecute(c, start, tos).regToNode
if result.info.line < 0: result.info = n.info
if cyclicTree(result): globalError(c.config, n.info, "macro produced a cyclic tree")
dec(g.config.evalMacroCounter)
c.callsite = nil
c.mode = oldMode
|