1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Dominik Picheta
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements asynchronous IO. This includes a dispatcher,
## a `Future` type implementation, and an `async` macro which allows
## asynchronous code to be written in a synchronous style with the `await`
## keyword.
##
## The dispatcher acts as a kind of event loop. You must call `poll` on it
## (or a function which does so for you such as `waitFor` or `runForever`)
## in order to poll for any outstanding events. The underlying implementation
## is based on epoll on Linux, IO Completion Ports on Windows and select on
## other operating systems.
##
## The `poll` function will not, on its own, return any events. Instead
## an appropriate `Future` object will be completed. A `Future` is a
## type which holds a value which is not yet available, but which *may* be
## available in the future. You can check whether a future is finished
## by using the `finished` function. When a future is finished it means that
## either the value that it holds is now available or it holds an error instead.
## The latter situation occurs when the operation to complete a future fails
## with an exception. You can distinguish between the two situations with the
## `failed` function.
##
## Future objects can also store a callback procedure which will be called
## automatically once the future completes.
##
## Futures therefore can be thought of as an implementation of the proactor
## pattern. In this
## pattern you make a request for an action, and once that action is fulfilled
## a future is completed with the result of that action. Requests can be
## made by calling the appropriate functions. For example: calling the `recv`
## function will create a request for some data to be read from a socket. The
## future which the `recv` function returns will then complete once the
## requested amount of data is read **or** an exception occurs.
##
## Code to read some data from a socket may look something like this:
## ```Nim
## var future = socket.recv(100)
## future.addCallback(
## proc () =
## echo(future.read)
## )
## ```
##
## All asynchronous functions returning a `Future` will not block. They
## will not however return immediately. An asynchronous function will have
## code which will be executed before an asynchronous request is made, in most
## cases this code sets up the request.
##
## In the above example, the `recv` function will return a brand new
## `Future` instance once the request for data to be read from the socket
## is made. This `Future` instance will complete once the requested amount
## of data is read, in this case it is 100 bytes. The second line sets a
## callback on this future which will be called once the future completes.
## All the callback does is write the data stored in the future to `stdout`.
## The `read` function is used for this and it checks whether the future
## completes with an error for you (if it did, it will simply raise the
## error), if there is no error, however, it returns the value of the future.
##
## Asynchronous procedures
## =======================
##
## Asynchronous procedures remove the pain of working with callbacks. They do
## this by allowing you to write asynchronous code the same way as you would
## write synchronous code.
##
## An asynchronous procedure is marked using the `{.async.}` pragma.
## When marking a procedure with the `{.async.}` pragma it must have a
## `Future[T]` return type or no return type at all. If you do not specify
## a return type then `Future[void]` is assumed.
##
## Inside asynchronous procedures `await` can be used to call any
## procedures which return a
## `Future`; this includes asynchronous procedures. When a procedure is
## "awaited", the asynchronous procedure it is awaited in will
## suspend its execution
## until the awaited procedure's Future completes. At which point the
## asynchronous procedure will resume its execution. During the period
## when an asynchronous procedure is suspended other asynchronous procedures
## will be run by the dispatcher.
##
## The `await` call may be used in many contexts. It can be used on the right
## hand side of a variable declaration: `var data = await socket.recv(100)`,
## in which case the variable will be set to the value of the future
## automatically. It can be used to await a `Future` object, and it can
## be used to await a procedure returning a `Future[void]`:
## `await socket.send("foobar")`.
##
## If an awaited future completes with an error, then `await` will re-raise
## this error. To avoid this, you can use the `yield` keyword instead of
## `await`. The following section shows different ways that you can handle
## exceptions in async procs.
##
## .. caution::
## Procedures marked {.async.} do not support mutable parameters such
## as `var int`. References such as `ref int` should be used instead.
##
## Handling Exceptions
## -------------------
##
## You can handle exceptions in the same way as in ordinary Nim code;
## by using the try statement:
##
## ```Nim
## try:
## let data = await sock.recv(100)
## echo("Received ", data)
## except:
## # Handle exception
## ```
##
## An alternative approach to handling exceptions is to use `yield` on a future
## then check the future's `failed` property. For example:
##
## ```Nim
## var future = sock.recv(100)
## yield future
## if future.failed:
## # Handle exception
## ```
##
##
## Discarding futures
## ==================
##
## Futures should **never** be discarded directly because they may contain
## errors. If you do not care for the result of a Future then you should use
## the `asyncCheck` procedure instead of the `discard` keyword. Note that this
## does not wait for completion, and you should use `waitFor` or `await` for that purpose.
##
## .. note:: `await` also checks if the future fails, so you can safely discard
## its result.
##
## Handling futures
## ================
##
## There are many different operations that apply to a future.
## The three primary high-level operations are `asyncCheck`,
## `waitFor`, and `await`.
##
## * `asyncCheck`: Raises an exception if the future fails. It neither waits
## for the future to finish nor returns the result of the future.
## * `waitFor`: Polls the event loop and blocks the current thread until the
## future finishes. This is often used to call an async procedure from a
## synchronous context and should never be used in an `async` proc.
## * `await`: Pauses execution in the current async procedure until the future
## finishes. While the current procedure is paused, other async procedures will
## continue running. Should be used instead of `waitFor` in an async
## procedure.
##
## Here is a handy quick reference chart showing their high-level differences:
## ============== ===================== =======================
## Procedure Context Blocking
## ============== ===================== =======================
## `asyncCheck` non-async and async non-blocking
## `waitFor` non-async blocks current thread
## `await` async suspends current proc
## ============== ===================== =======================
##
## Examples
## ========
##
## For examples take a look at the documentation for the modules implementing
## asynchronous IO. A good place to start is the
## `asyncnet module <asyncnet.html>`_.
##
## Investigating pending futures
## =============================
##
## It's possible to get into a situation where an async proc, or more accurately
## a `Future[T]` gets stuck and
## never completes. This can happen for various reasons and can cause serious
## memory leaks. When this occurs it's hard to identify the procedure that is
## stuck.
##
## Thankfully there is a mechanism which tracks the count of each pending future.
## All you need to do to enable it is compile with `-d:futureLogging` and
## use the `getFuturesInProgress` procedure to get the list of pending futures
## together with the stack traces to the moment of their creation.
##
## You may also find it useful to use this
## `prometheus package <https://github.com/dom96/prometheus>`_ which will log
## the pending futures into prometheus, allowing you to analyse them via a nice
## graph.
##
##
##
## Limitations/Bugs
## ================
##
## * The effect system (`raises: []`) does not work with async procedures.
## * Mutable parameters are not supported by async procedures.
##
##
## Multiple async backend support
## ==============================
##
## Thanks to its powerful macro support, Nim allows ``async``/``await`` to be
## implemented in libraries with only minimal support from the language - as
## such, multiple ``async`` libraries exist, including ``asyncdispatch`` and
## ``chronos``, and more may come to be developed in the future.
##
## Libraries built on top of async/await may wish to support multiple async
## backends - the best way to do so is to create separate modules for each backend
## that may be imported side-by-side.
##
## An alternative way is to select backend using a global compile flag - this
## method makes it difficult to compose applications that use both backends as may
## happen with transitive dependencies, but may be appropriate in some cases -
## libraries choosing this path should call the flag `asyncBackend`, allowing
## applications to choose the backend with `-d:asyncBackend=<backend_name>`.
##
## Known `async` backends include:
##
## * `-d:asyncBackend=none`: disable `async` support completely
## * `-d:asyncBackend=asyncdispatch`: https://nim-lang.org/docs/asyncdispatch.html
## * `-d:asyncBackend=chronos`: https://github.com/status-im/nim-chronos/
##
## ``none`` can be used when a library supports both a synchronous and
## asynchronous API, to disable the latter.
import std/[os, tables, strutils, times, heapqueue, options, asyncstreams]
import std/[math, monotimes]
import std/asyncfutures except callSoon
import std/[nativesockets, net, deques]
when defined(nimPreviewSlimSystem):
import std/[assertions, syncio]
export Port, SocketFlag
export asyncfutures except callSoon
export asyncstreams
# TODO: Check if yielded future is nil and throw a more meaningful exception
type
PDispatcherBase = ref object of RootRef
timers*: HeapQueue[tuple[finishAt: MonoTime, fut: Future[void]]]
callbacks*: Deque[proc () {.gcsafe.}]
proc processTimers(
p: PDispatcherBase, didSomeWork: var bool
): Option[int] {.inline.} =
# Pop the timers in the order in which they will expire (smaller `finishAt`).
var count = p.timers.len
let t = getMonoTime()
while count > 0 and t >= p.timers[0].finishAt:
p.timers.pop().fut.complete()
dec count
didSomeWork = true
# Return the number of milliseconds in which the next timer will expire.
if p.timers.len == 0: return
let millisecs = (p.timers[0].finishAt - getMonoTime()).inMilliseconds
return some(millisecs.int + 1)
proc processPendingCallbacks(p: PDispatcherBase; didSomeWork: var bool) =
while p.callbacks.len > 0:
var cb = p.callbacks.popFirst()
cb()
didSomeWork = true
proc adjustTimeout(
p: PDispatcherBase, pollTimeout: int, nextTimer: Option[int]
): int {.inline.} =
if p.callbacks.len != 0:
return 0
if nextTimer.isNone() or pollTimeout == -1:
return pollTimeout
result = max(nextTimer.get(), 0)
result = min(pollTimeout, result)
proc runOnce(timeout: int): bool {.gcsafe.}
proc callSoon*(cbproc: proc () {.gcsafe.}) {.gcsafe.}
## Schedule `cbproc` to be called as soon as possible.
## The callback is called when control returns to the event loop.
proc initCallSoonProc =
if asyncfutures.getCallSoonProc().isNil:
asyncfutures.setCallSoonProc(callSoon)
template implementSetInheritable() {.dirty.} =
when declared(setInheritable):
proc setInheritable*(fd: AsyncFD, inheritable: bool): bool =
## Control whether a file handle can be inherited by child processes.
## Returns `true` on success.
##
## This procedure is not guaranteed to be available for all platforms.
## Test for availability with `declared() <system.html#declared,untyped>`_.
fd.FileHandle.setInheritable(inheritable)
when defined(windows) or defined(nimdoc):
import std/[winlean, sets, hashes]
type
CompletionKey = ULONG_PTR
CompletionData* = object
fd*: AsyncFD # TODO: Rename this.
cb*: owned(proc (fd: AsyncFD, bytesTransferred: DWORD,
errcode: OSErrorCode) {.closure, gcsafe.})
cell*: ForeignCell # we need this `cell` to protect our `cb` environment,
# when using RegisterWaitForSingleObject, because
# waiting is done in different thread.
PDispatcher* = ref object of PDispatcherBase
ioPort: Handle
handles*: HashSet[AsyncFD] # Export handles so that an external library can register them.
CustomObj = object of OVERLAPPED
data*: CompletionData
CustomRef* = ref CustomObj
AsyncFD* = distinct int
PostCallbackData = object
ioPort: Handle
handleFd: AsyncFD
waitFd: Handle
ovl: owned CustomRef
PostCallbackDataPtr = ptr PostCallbackData
AsyncEventImpl = object
hEvent: Handle
hWaiter: Handle
pcd: PostCallbackDataPtr
AsyncEvent* = ptr AsyncEventImpl
Callback* = proc (fd: AsyncFD): bool {.closure, gcsafe.}
proc hash(x: AsyncFD): Hash {.borrow.}
proc `==`*(x: AsyncFD, y: AsyncFD): bool {.borrow.}
proc newDispatcher*(): owned PDispatcher =
## Creates a new Dispatcher instance.
new result
result.ioPort = createIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0, 1)
result.handles = initHashSet[AsyncFD]()
result.timers.clear()
result.callbacks = initDeque[proc () {.closure, gcsafe.}](64)
var gDisp{.threadvar.}: owned PDispatcher ## Global dispatcher
proc setGlobalDispatcher*(disp: sink PDispatcher) =
if not gDisp.isNil:
assert gDisp.callbacks.len == 0
gDisp = disp
initCallSoonProc()
proc getGlobalDispatcher*(): PDispatcher =
if gDisp.isNil:
setGlobalDispatcher(newDispatcher())
result = gDisp
proc getIoHandler*(disp: PDispatcher): Handle =
## Returns the underlying IO Completion Port handle (Windows) or selector
## (Unix) for the specified dispatcher.
return disp.ioPort
proc register*(fd: AsyncFD) =
## Registers `fd` with the dispatcher.
let p = getGlobalDispatcher()
if createIoCompletionPort(fd.Handle, p.ioPort,
cast[CompletionKey](fd), 1) == 0:
raiseOSError(osLastError())
p.handles.incl(fd)
proc verifyPresence(fd: AsyncFD) =
## Ensures that file descriptor has been registered with the dispatcher.
## Raises ValueError if `fd` has not been registered.
let p = getGlobalDispatcher()
if fd notin p.handles:
raise newException(ValueError,
"Operation performed on a socket which has not been registered with" &
" the dispatcher yet.")
proc hasPendingOperations*(): bool =
## Returns `true` if the global dispatcher has pending operations.
let p = getGlobalDispatcher()
p.handles.len != 0 or p.timers.len != 0 or p.callbacks.len != 0
proc runOnce(timeout: int): bool =
let p = getGlobalDispatcher()
if p.handles.len == 0 and p.timers.len == 0 and p.callbacks.len == 0:
raise newException(ValueError,
"No handles or timers registered in dispatcher.")
result = false
let nextTimer = processTimers(p, result)
let at = adjustTimeout(p, timeout, nextTimer)
var llTimeout =
if at == -1: winlean.INFINITE
else: at.int32
var lpNumberOfBytesTransferred: DWORD
var lpCompletionKey: ULONG_PTR
var customOverlapped: CustomRef
let res = getQueuedCompletionStatus(p.ioPort,
addr lpNumberOfBytesTransferred, addr lpCompletionKey,
cast[ptr POVERLAPPED](addr customOverlapped), llTimeout).bool
result = true
# For 'gcDestructors' the destructor of 'customOverlapped' will
# be called at the end and we are the only owner here. This means
# We do not have to 'GC_unref(customOverlapped)' because the destructor
# does that for us.
# http://stackoverflow.com/a/12277264/492186
# TODO: http://www.serverframework.com/handling-multiple-pending-socket-read-and-write-operations.html
if res:
# This is useful for ensuring the reliability of the overlapped struct.
assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
customOverlapped.data.cb(customOverlapped.data.fd,
lpNumberOfBytesTransferred, OSErrorCode(-1))
# If cell.data != nil, then system.protect(rawEnv(cb)) was called,
# so we need to dispose our `cb` environment, because it is not needed
# anymore.
if customOverlapped.data.cell.data != nil:
system.dispose(customOverlapped.data.cell)
when not defined(gcDestructors):
GC_unref(customOverlapped)
else:
let errCode = osLastError()
if customOverlapped != nil:
assert customOverlapped.data.fd == lpCompletionKey.AsyncFD
customOverlapped.data.cb(customOverlapped.data.fd,
lpNumberOfBytesTransferred, errCode)
if customOverlapped.data.cell.data != nil:
system.dispose(customOverlapped.data.cell)
when not defined(gcDestructors):
GC_unref(customOverlapped)
else:
if errCode.int32 == WAIT_TIMEOUT:
# Timed out
result = false
else: raiseOSError(errCode)
# Timer processing.
discard processTimers(p, result)
# Callback queue processing
processPendingCallbacks(p, result)
var acceptEx: WSAPROC_ACCEPTEX
var connectEx: WSAPROC_CONNECTEX
var getAcceptExSockAddrs: WSAPROC_GETACCEPTEXSOCKADDRS
proc initPointer(s: SocketHandle, fun: var pointer, guid: var GUID): bool =
# Ref: https://github.com/powdahound/twisted/blob/master/twisted/internet/iocpreactor/iocpsupport/winsock_pointers.c
var bytesRet: DWORD
fun = nil
result = WSAIoctl(s, SIO_GET_EXTENSION_FUNCTION_POINTER, addr guid,
sizeof(GUID).DWORD, addr fun, sizeof(pointer).DWORD,
addr bytesRet, nil, nil) == 0
proc initAll() =
let dummySock = createNativeSocket()
if dummySock == INVALID_SOCKET:
raiseOSError(osLastError())
var fun: pointer = nil
if not initPointer(dummySock, fun, WSAID_CONNECTEX):
raiseOSError(osLastError())
connectEx = cast[WSAPROC_CONNECTEX](fun)
if not initPointer(dummySock, fun, WSAID_ACCEPTEX):
raiseOSError(osLastError())
acceptEx = cast[WSAPROC_ACCEPTEX](fun)
if not initPointer(dummySock, fun, WSAID_GETACCEPTEXSOCKADDRS):
raiseOSError(osLastError())
getAcceptExSockAddrs = cast[WSAPROC_GETACCEPTEXSOCKADDRS](fun)
close(dummySock)
proc newCustom*(): CustomRef =
result = CustomRef() # 0
GC_ref(result) # 1 prevent destructor from doing a premature free.
# destructor of newCustom's caller --> 0. This means
# Windows holds a ref for us with RC == 0 (single owner).
# This is passed back to us in the IO completion port.
proc recv*(socket: AsyncFD, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[string]) =
## Reads **up to** `size` bytes from `socket`. Returned future will
## complete once all the data requested is read, a part of the data has been
## read, or the socket has disconnected in which case the future will
## complete with a value of `""`.
##
## .. warning:: The `Peek` socket flag is not supported on Windows.
# Things to note:
# * When WSARecv completes immediately then `bytesReceived` is very
# unreliable.
# * Still need to implement message-oriented socket disconnection,
# '\0' in the message currently signifies a socket disconnect. Who
# knows what will happen when someone sends that to our socket.
verifyPresence(socket)
assert SocketFlag.Peek notin flags, "Peek not supported on Windows."
var retFuture = newFuture[string]("recv")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](alloc0(size))
dataBuf.len = size.ULONG
var bytesReceived: DWORD
var flagsio = flags.toOSFlags().DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
if bytesCount == 0 and dataBuf.buf[0] == '\0':
retFuture.complete("")
else:
var data = newString(bytesCount)
assert bytesCount <= size
copyMem(addr data[0], addr dataBuf.buf[0], bytesCount)
retFuture.complete($data)
else:
if flags.isDisconnectionError(errcode):
retFuture.complete("")
else:
retFuture.fail(newOSError(errcode))
if dataBuf.buf != nil:
dealloc dataBuf.buf
dataBuf.buf = nil
)
let ret = WSARecv(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
addr flagsio, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
if dataBuf.buf != nil:
dealloc dataBuf.buf
dataBuf.buf = nil
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete("")
else:
retFuture.fail(newOSError(err))
elif ret == 0:
# Request completed immediately.
if bytesReceived != 0:
var data = newString(bytesReceived)
assert bytesReceived <= size
copyMem(addr data[0], addr dataBuf.buf[0], bytesReceived)
retFuture.complete($data)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete("")
return retFuture
proc recvInto*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Reads **up to** `size` bytes from `socket` into `buf`, which must
## at least be of that size. Returned future will complete once all the
## data requested is read, a part of the data has been read, or the socket
## has disconnected in which case the future will complete with a value of
## `0`.
##
## .. warning:: The `Peek` socket flag is not supported on Windows.
# Things to note:
# * When WSARecv completes immediately then `bytesReceived` is very
# unreliable.
# * Still need to implement message-oriented socket disconnection,
# '\0' in the message currently signifies a socket disconnect. Who
# knows what will happen when someone sends that to our socket.
verifyPresence(socket)
assert SocketFlag.Peek notin flags, "Peek not supported on Windows."
var retFuture = newFuture[int]("recvInto")
#buf[] = '\0'
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](buf)
dataBuf.len = size.ULONG
var bytesReceived: DWORD
var flagsio = flags.toOSFlags().DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete(bytesCount)
else:
if flags.isDisconnectionError(errcode):
retFuture.complete(0)
else:
retFuture.fail(newOSError(errcode))
if dataBuf.buf != nil:
dataBuf.buf = nil
)
let ret = WSARecv(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
addr flagsio, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
if dataBuf.buf != nil:
dataBuf.buf = nil
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete(0)
else:
retFuture.fail(newOSError(err))
elif ret == 0:
# Request completed immediately.
if bytesReceived != 0:
assert bytesReceived <= size
retFuture.complete(bytesReceived)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete(bytesReceived)
return retFuture
proc send*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `size` bytes from `buf` to `socket`. The returned future
## will complete once all data has been sent.
##
## .. warning:: Use it with caution. If `buf` refers to GC'ed object,
## you must use GC_ref/GC_unref calls to avoid early freeing of the buffer.
verifyPresence(socket)
var retFuture = newFuture[void]("send")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](buf)
dataBuf.len = size.ULONG
var bytesReceived, lowFlags: DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete()
else:
if flags.isDisconnectionError(errcode):
retFuture.complete()
else:
retFuture.fail(newOSError(errcode))
)
let ret = WSASend(socket.SocketHandle, addr dataBuf, 1, addr bytesReceived,
lowFlags, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
if flags.isDisconnectionError(err):
retFuture.complete()
else:
retFuture.fail(newOSError(err))
else:
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
proc sendTo*(socket: AsyncFD, data: pointer, size: int, saddr: ptr SockAddr,
saddrLen: SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` to specified destination `saddr`, using
## socket `socket`. The returned future will complete once all data
## has been sent.
verifyPresence(socket)
var retFuture = newFuture[void]("sendTo")
var dataBuf: TWSABuf
dataBuf.buf = cast[cstring](data)
dataBuf.len = size.ULONG
var bytesSent = 0.DWORD
var lowFlags = 0.DWORD
# we will preserve address in our stack
var staddr: array[128, char] # SOCKADDR_STORAGE size is 128 bytes
var stalen: cint = cint(saddrLen)
zeroMem(addr(staddr[0]), 128)
copyMem(addr(staddr[0]), saddr, saddrLen)
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
retFuture.complete()
else:
retFuture.fail(newOSError(errcode))
)
let ret = WSASendTo(socket.SocketHandle, addr dataBuf, 1, addr bytesSent,
lowFlags, cast[ptr SockAddr](addr(staddr[0])),
stalen, cast[POVERLAPPED](ol), nil)
if ret == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
retFuture.fail(newOSError(err))
else:
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
proc recvFromInto*(socket: AsyncFD, data: pointer, size: int,
saddr: ptr SockAddr, saddrLen: ptr SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Receives a datagram data from `socket` into `buf`, which must
## be at least of size `size`, address of datagram's sender will be
## stored into `saddr` and `saddrLen`. Returned future will complete
## once one datagram has been received, and will return size of packet
## received.
verifyPresence(socket)
var retFuture = newFuture[int]("recvFromInto")
var dataBuf = TWSABuf(buf: cast[cstring](data), len: size.ULONG)
var bytesReceived = 0.DWORD
var lowFlags = 0.DWORD
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
assert bytesCount <= size
retFuture.complete(bytesCount)
else:
# datagram sockets don't have disconnection,
# so we can just raise an exception
retFuture.fail(newOSError(errcode))
)
let res = WSARecvFrom(socket.SocketHandle, addr dataBuf, 1,
addr bytesReceived, addr lowFlags,
saddr, cast[ptr cint](saddrLen),
cast[POVERLAPPED](ol), nil)
if res == -1:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
GC_unref(ol)
retFuture.fail(newOSError(err))
else:
# Request completed immediately.
if bytesReceived != 0:
assert bytesReceived <= size
retFuture.complete(bytesReceived)
else:
if hasOverlappedIoCompleted(cast[POVERLAPPED](ol)):
retFuture.complete(bytesReceived)
return retFuture
proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)):
owned(Future[tuple[address: string, client: AsyncFD]]) {.gcsafe.} =
## Accepts a new connection. Returns a future containing the client socket
## corresponding to that connection and the remote address of the client.
## The future will complete when the connection is successfully accepted.
##
## The resulting client socket is automatically registered to the
## dispatcher.
##
## If `inheritable` is false (the default), the resulting client socket will
## not be inheritable by child processes.
##
## The `accept` call may result in an error if the connecting socket
## disconnects during the duration of the `accept`. If the `SafeDisconn`
## flag is specified then this error will not be raised and instead
## accept will be called again.
verifyPresence(socket)
var retFuture = newFuture[tuple[address: string, client: AsyncFD]]("acceptAddr")
var clientSock = createNativeSocket(inheritable = inheritable)
if clientSock == osInvalidSocket: raiseOSError(osLastError())
const lpOutputLen = 1024
var lpOutputBuf = newString(lpOutputLen)
var dwBytesReceived: DWORD
let dwReceiveDataLength = 0.DWORD # We don't want any data to be read.
let dwLocalAddressLength = DWORD(sizeof(Sockaddr_in6) + 16)
let dwRemoteAddressLength = DWORD(sizeof(Sockaddr_in6) + 16)
template failAccept(errcode) =
if flags.isDisconnectionError(errcode):
var newAcceptFut = acceptAddr(socket, flags)
newAcceptFut.callback =
proc () =
if newAcceptFut.failed:
retFuture.fail(newAcceptFut.readError)
else:
retFuture.complete(newAcceptFut.read)
else:
retFuture.fail(newOSError(errcode))
template completeAccept() {.dirty.} =
var listenSock = socket
let setoptRet = setsockopt(clientSock, SOL_SOCKET,
SO_UPDATE_ACCEPT_CONTEXT, addr listenSock,
sizeof(listenSock).SockLen)
if setoptRet != 0:
let errcode = osLastError()
discard clientSock.closesocket()
failAccept(errcode)
else:
var localSockaddr, remoteSockaddr: ptr SockAddr
var localLen, remoteLen: int32
getAcceptExSockAddrs(addr lpOutputBuf[0], dwReceiveDataLength,
dwLocalAddressLength, dwRemoteAddressLength,
addr localSockaddr, addr localLen,
addr remoteSockaddr, addr remoteLen)
try:
let address = getAddrString(remoteSockaddr)
register(clientSock.AsyncFD)
retFuture.complete((address: address, client: clientSock.AsyncFD))
except:
# getAddrString may raise
clientSock.close()
retFuture.fail(getCurrentException())
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) {.gcsafe.} =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
completeAccept()
else:
failAccept(errcode)
)
# http://msdn.microsoft.com/en-us/library/windows/desktop/ms737524%28v=vs.85%29.aspx
let ret = acceptEx(socket.SocketHandle, clientSock, addr lpOutputBuf[0],
dwReceiveDataLength,
dwLocalAddressLength,
dwRemoteAddressLength,
addr dwBytesReceived, cast[POVERLAPPED](ol))
if not ret:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
failAccept(err)
GC_unref(ol)
else:
completeAccept()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it will
# free `ol`.
return retFuture
implementSetInheritable()
proc closeSocket*(socket: AsyncFD) =
## Closes a socket and ensures that it is unregistered.
socket.SocketHandle.close()
getGlobalDispatcher().handles.excl(socket)
proc unregister*(fd: AsyncFD) =
## Unregisters `fd`.
getGlobalDispatcher().handles.excl(fd)
proc contains*(disp: PDispatcher, fd: AsyncFD): bool =
return fd in disp.handles
{.push stackTrace: off.}
proc waitableCallback(param: pointer,
timerOrWaitFired: WINBOOL) {.stdcall.} =
var p = cast[PostCallbackDataPtr](param)
discard postQueuedCompletionStatus(p.ioPort, timerOrWaitFired.DWORD,
ULONG_PTR(p.handleFd),
cast[pointer](p.ovl))
{.pop.}
proc registerWaitableEvent(fd: AsyncFD, cb: Callback; mask: DWORD) =
let p = getGlobalDispatcher()
var flags = (WT_EXECUTEINWAITTHREAD or WT_EXECUTEONLYONCE).DWORD
var hEvent = wsaCreateEvent()
if hEvent == 0:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
pcd.ioPort = p.ioPort
pcd.handleFd = fd
var ol = newCustom()
ol.data = CompletionData(fd: fd, cb:
proc(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) {.gcsafe.} =
# we excluding our `fd` because cb(fd) can register own handler
# for this `fd`
p.handles.excl(fd)
# unregisterWait() is called before callback, because appropriate
# winsockets function can re-enable event.
# https://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
if unregisterWait(pcd.waitFd) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
if cb(fd):
# callback returned `true`, so we free all allocated resources
deallocShared(cast[pointer](pcd))
if not wsaCloseEvent(hEvent):
raiseOSError(osLastError())
# pcd.ovl will be unrefed in poll().
else:
# callback returned `false` we need to continue
if p.handles.contains(fd):
# new callback was already registered with `fd`, so we free all
# allocated resources. This happens because in callback `cb`
# addRead/addWrite was called with same `fd`.
deallocShared(cast[pointer](pcd))
if not wsaCloseEvent(hEvent):
raiseOSError(osLastError())
else:
# we need to include `fd` again
p.handles.incl(fd)
# and register WaitForSingleObject again
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), INFINITE, flags):
# pcd.ovl will be unrefed in poll()
let err = osLastError()
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
else:
# we incref `pcd.ovl` and `protect` callback one more time,
# because it will be unrefed and disposed in `poll()` after
# callback finishes.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
)
# We need to protect our callback environment value, so GC will not free it
# accidentally.
ol.data.cell = system.protect(rawEnv(ol.data.cb))
# This is main part of `hacky way` is using WSAEventSelect, so `hEvent`
# will be signaled when appropriate `mask` events will be triggered.
if wsaEventSelect(fd.SocketHandle, hEvent, mask) != 0:
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
pcd.ovl = ol
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), INFINITE, flags):
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard wsaCloseEvent(hEvent)
raiseOSError(err)
p.handles.incl(fd)
proc addRead*(fd: AsyncFD, cb: Callback) =
## Start watching the file descriptor for read availability and then call
## the callback `cb`.
##
## This is not `pure` mechanism for Windows Completion Ports (IOCP),
## so if you can avoid it, please do it. Use `addRead` only if really
## need it (main usecase is adaptation of unix-like libraries to be
## asynchronous on Windows).
##
## If you use this function, you don't need to use asyncdispatch.recv()
## or asyncdispatch.accept(), because they are using IOCP, please use
## nativesockets.recv() and nativesockets.accept() instead.
##
## Be sure your callback `cb` returns `true`, if you want to remove
## watch of `read` notifications, and `false`, if you want to continue
## receiving notifications.
registerWaitableEvent(fd, cb, FD_READ or FD_ACCEPT or FD_OOB or FD_CLOSE)
proc addWrite*(fd: AsyncFD, cb: Callback) =
## Start watching the file descriptor for write availability and then call
## the callback `cb`.
##
## This is not `pure` mechanism for Windows Completion Ports (IOCP),
## so if you can avoid it, please do it. Use `addWrite` only if really
## need it (main usecase is adaptation of unix-like libraries to be
## asynchronous on Windows).
##
## If you use this function, you don't need to use asyncdispatch.send()
## or asyncdispatch.connect(), because they are using IOCP, please use
## nativesockets.send() and nativesockets.connect() instead.
##
## Be sure your callback `cb` returns `true`, if you want to remove
## watch of `write` notifications, and `false`, if you want to continue
## receiving notifications.
registerWaitableEvent(fd, cb, FD_WRITE or FD_CONNECT or FD_CLOSE)
template registerWaitableHandle(p, hEvent, flags, pcd, timeout,
handleCallback) =
let handleFD = AsyncFD(hEvent)
pcd.ioPort = p.ioPort
pcd.handleFd = handleFD
var ol = newCustom()
ol.data.fd = handleFD
ol.data.cb = handleCallback
# We need to protect our callback environment value, so GC will not free it
# accidentally.
ol.data.cell = system.protect(rawEnv(ol.data.cb))
pcd.ovl = ol
if not registerWaitForSingleObject(addr(pcd.waitFd), hEvent,
cast[WAITORTIMERCALLBACK](waitableCallback),
cast[pointer](pcd), timeout.DWORD, flags):
let err = osLastError()
GC_unref(ol)
deallocShared(cast[pointer](pcd))
discard closeHandle(hEvent)
raiseOSError(err)
p.handles.incl(handleFD)
template closeWaitable(handle: untyped) =
let waitFd = pcd.waitFd
deallocShared(cast[pointer](pcd))
p.handles.excl(fd)
if unregisterWait(waitFd) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
discard closeHandle(handle)
raiseOSError(err)
if closeHandle(handle) == 0:
raiseOSError(osLastError())
proc addTimer*(timeout: int, oneshot: bool, cb: Callback) =
## Registers callback `cb` to be called when timer expired.
##
## Parameters:
##
## * `timeout` - timeout value in milliseconds.
## * `oneshot`
## * `true` - generate only one timeout event
## * `false` - generate timeout events periodically
doAssert(timeout > 0)
let p = getGlobalDispatcher()
var hEvent = createEvent(nil, 1, 0, nil)
if hEvent == INVALID_HANDLE_VALUE:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD
if oneshot: flags = flags or WT_EXECUTEONLYONCE
proc timercb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
let res = cb(fd)
if res or oneshot:
closeWaitable(hEvent)
else:
# if callback returned `false`, then it wants to be called again, so
# we need to ref and protect `pcd.ovl` again, because it will be
# unrefed and disposed in `poll()`.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
registerWaitableHandle(p, hEvent, flags, pcd, timeout, timercb)
proc addProcess*(pid: int, cb: Callback) =
## Registers callback `cb` to be called when process with process ID
## `pid` exited.
const NULL = Handle(0)
let p = getGlobalDispatcher()
let procFlags = SYNCHRONIZE
var hProcess = openProcess(procFlags, 0, pid.DWORD)
if hProcess == NULL:
raiseOSError(osLastError())
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD or WT_EXECUTEONLYONCE.DWORD
proc proccb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
closeWaitable(hProcess)
discard cb(fd)
registerWaitableHandle(p, hProcess, flags, pcd, INFINITE, proccb)
proc newAsyncEvent*(): AsyncEvent =
## Creates a new thread-safe `AsyncEvent` object.
##
## New `AsyncEvent` object is not automatically registered with
## dispatcher like `AsyncSocket`.
var sa = SECURITY_ATTRIBUTES(
nLength: sizeof(SECURITY_ATTRIBUTES).cint,
bInheritHandle: 1
)
var event = createEvent(addr(sa), 0'i32, 0'i32, nil)
if event == INVALID_HANDLE_VALUE:
raiseOSError(osLastError())
result = cast[AsyncEvent](allocShared0(sizeof(AsyncEventImpl)))
result.hEvent = event
proc trigger*(ev: AsyncEvent) =
## Set event `ev` to signaled state.
if setEvent(ev.hEvent) == 0:
raiseOSError(osLastError())
proc unregister*(ev: AsyncEvent) =
## Unregisters event `ev`.
doAssert(ev.hWaiter != 0, "Event is not registered in the queue!")
let p = getGlobalDispatcher()
p.handles.excl(AsyncFD(ev.hEvent))
if unregisterWait(ev.hWaiter) == 0:
let err = osLastError()
if err.int32 != ERROR_IO_PENDING:
raiseOSError(err)
ev.hWaiter = 0
proc close*(ev: AsyncEvent) =
## Closes event `ev`.
let res = closeHandle(ev.hEvent)
deallocShared(cast[pointer](ev))
if res == 0:
raiseOSError(osLastError())
proc addEvent*(ev: AsyncEvent, cb: Callback) =
## Registers callback `cb` to be called when `ev` will be signaled
doAssert(ev.hWaiter == 0, "Event is already registered in the queue!")
let p = getGlobalDispatcher()
let hEvent = ev.hEvent
var pcd = cast[PostCallbackDataPtr](allocShared0(sizeof(PostCallbackData)))
var flags = WT_EXECUTEINWAITTHREAD.DWORD
proc eventcb(fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if ev.hWaiter != 0:
if cb(fd):
# we need this check to avoid exception, if `unregister(event)` was
# called in callback.
deallocShared(cast[pointer](pcd))
if ev.hWaiter != 0:
unregister(ev)
else:
# if callback returned `false`, then it wants to be called again, so
# we need to ref and protect `pcd.ovl` again, because it will be
# unrefed and disposed in `poll()`.
GC_ref(pcd.ovl)
pcd.ovl.data.cell = system.protect(rawEnv(pcd.ovl.data.cb))
else:
# if ev.hWaiter == 0, then event was unregistered before `poll()` call.
deallocShared(cast[pointer](pcd))
registerWaitableHandle(p, hEvent, flags, pcd, INFINITE, eventcb)
ev.hWaiter = pcd.waitFd
initAll()
else:
import std/selectors
from std/posix import EINTR, EAGAIN, EINPROGRESS, EWOULDBLOCK, MSG_PEEK,
MSG_NOSIGNAL
when declared(posix.accept4):
from std/posix import accept4, SOCK_CLOEXEC
when defined(genode):
import genode/env # get the implicit Genode env
import genode/signals
const
InitCallbackListSize = 4 # initial size of callbacks sequence,
# associated with file/socket descriptor.
InitDelayedCallbackListSize = 64 # initial size of delayed callbacks
# queue.
type
AsyncFD* = distinct cint
Callback* = proc (fd: AsyncFD): bool {.closure, gcsafe.}
AsyncData = object
readList: seq[Callback]
writeList: seq[Callback]
AsyncEvent* = distinct SelectEvent
PDispatcher* = ref object of PDispatcherBase
selector: Selector[AsyncData]
when defined(genode):
signalHandler: SignalHandler
proc `==`*(x, y: AsyncFD): bool {.borrow.}
proc `==`*(x, y: AsyncEvent): bool {.borrow.}
template newAsyncData(): AsyncData =
AsyncData(
readList: newSeqOfCap[Callback](InitCallbackListSize),
writeList: newSeqOfCap[Callback](InitCallbackListSize)
)
proc newDispatcher*(): owned(PDispatcher) =
new result
result.selector = newSelector[AsyncData]()
result.timers.clear()
result.callbacks = initDeque[proc () {.closure, gcsafe.}](InitDelayedCallbackListSize)
when defined(genode):
let entrypoint = ep(cast[GenodeEnv](runtimeEnv))
result.signalHandler = newSignalHandler(entrypoint):
discard runOnce(0)
var gDisp{.threadvar.}: owned PDispatcher ## Global dispatcher
when defined(nuttx):
import std/exitprocs
proc cleanDispatcher() {.noconv.} =
gDisp = nil
proc addFinalyzer() =
addExitProc(cleanDispatcher)
proc setGlobalDispatcher*(disp: owned PDispatcher) =
if not gDisp.isNil:
assert gDisp.callbacks.len == 0
gDisp = disp
initCallSoonProc()
proc getGlobalDispatcher*(): PDispatcher =
if gDisp.isNil:
setGlobalDispatcher(newDispatcher())
when defined(nuttx):
addFinalyzer()
result = gDisp
proc getIoHandler*(disp: PDispatcher): Selector[AsyncData] =
return disp.selector
proc register*(fd: AsyncFD) =
let p = getGlobalDispatcher()
var data = newAsyncData()
p.selector.registerHandle(fd.SocketHandle, {}, data)
proc unregister*(fd: AsyncFD) =
getGlobalDispatcher().selector.unregister(fd.SocketHandle)
proc unregister*(ev: AsyncEvent) =
getGlobalDispatcher().selector.unregister(SelectEvent(ev))
proc contains*(disp: PDispatcher, fd: AsyncFD): bool =
return fd.SocketHandle in disp.selector
proc addRead*(fd: AsyncFD, cb: Callback) =
let p = getGlobalDispatcher()
var newEvents = {Event.Read}
withData(p.selector, fd.SocketHandle, adata) do:
adata.readList.add(cb)
newEvents.incl(Event.Read)
if len(adata.writeList) != 0: newEvents.incl(Event.Write)
do:
raise newException(ValueError, "File descriptor not registered.")
p.selector.updateHandle(fd.SocketHandle, newEvents)
proc addWrite*(fd: AsyncFD, cb: Callback) =
let p = getGlobalDispatcher()
var newEvents = {Event.Write}
withData(p.selector, fd.SocketHandle, adata) do:
adata.writeList.add(cb)
newEvents.incl(Event.Write)
if len(adata.readList) != 0: newEvents.incl(Event.Read)
do:
raise newException(ValueError, "File descriptor not registered.")
p.selector.updateHandle(fd.SocketHandle, newEvents)
proc hasPendingOperations*(): bool =
let p = getGlobalDispatcher()
not p.selector.isEmpty() or p.timers.len != 0 or p.callbacks.len != 0
proc prependSeq(dest: var seq[Callback]; src: sink seq[Callback]) =
var old = move dest
dest = src
for i in 0..high(old):
dest.add(move old[i])
proc processBasicCallbacks(
fd: AsyncFD, event: Event
): tuple[readCbListCount, writeCbListCount: int] =
# Process pending descriptor and AsyncEvent callbacks.
#
# Invoke every callback stored in `rwlist`, until one
# returns `false` (which means callback wants to stay
# alive). In such case all remaining callbacks will be added
# to `rwlist` again, in the order they have been inserted.
#
# `rwlist` associated with file descriptor MUST BE emptied before
# dispatching callback (See https://github.com/nim-lang/Nim/issues/5128),
# or it can be possible to fall into endless cycle.
var curList: seq[Callback]
let selector = getGlobalDispatcher().selector
withData(selector, fd.int, fdData):
case event
of Event.Read:
#shallowCopy(curList, fdData.readList)
curList = move fdData.readList
fdData.readList = newSeqOfCap[Callback](InitCallbackListSize)
of Event.Write:
#shallowCopy(curList, fdData.writeList)
curList = move fdData.writeList
fdData.writeList = newSeqOfCap[Callback](InitCallbackListSize)
else:
assert false, "Cannot process callbacks for " & $event
let newLength = max(len(curList), InitCallbackListSize)
var newList = newSeqOfCap[Callback](newLength)
var eventsExtinguished = false
for cb in curList:
if eventsExtinguished:
newList.add(cb)
elif not cb(fd):
# Callback wants to be called again.
newList.add(cb)
# This callback has returned with EAGAIN, so we don't need to
# call any other callbacks as they are all waiting for the same event
# on the same fd.
# We do need to ensure they are called again though.
eventsExtinguished = true
withData(selector, fd.int, fdData) do:
# Descriptor is still present in the queue.
case event
of Event.Read: prependSeq(fdData.readList, newList)
of Event.Write: prependSeq(fdData.writeList, newList)
else:
assert false, "Cannot process callbacks for " & $event
result.readCbListCount = len(fdData.readList)
result.writeCbListCount = len(fdData.writeList)
do:
# Descriptor was unregistered in callback via `unregister()`.
result.readCbListCount = -1
result.writeCbListCount = -1
proc processCustomCallbacks(p: PDispatcher; fd: AsyncFD) =
# Process pending custom event callbacks. Custom events are
# {Event.Timer, Event.Signal, Event.Process, Event.Vnode}.
# There can be only one callback registered with one descriptor,
# so there is no need to iterate over list.
var curList: seq[Callback]
withData(p.selector, fd.int, adata) do:
curList = move adata.readList
adata.readList = newSeqOfCap[Callback](InitCallbackListSize)
let newLength = len(curList)
var newList = newSeqOfCap[Callback](newLength)
var cb = curList[0]
if not cb(fd):
newList.add(cb)
withData(p.selector, fd.int, adata) do:
# descriptor still present in queue.
adata.readList = newList & adata.readList
if len(adata.readList) == 0:
# if no callbacks registered with descriptor, unregister it.
p.selector.unregister(fd.int)
do:
# descriptor was unregistered in callback via `unregister()`.
discard
implementSetInheritable()
proc closeSocket*(sock: AsyncFD) =
let selector = getGlobalDispatcher().selector
if sock.SocketHandle notin selector:
raise newException(ValueError, "File descriptor not registered.")
let data = selector.getData(sock.SocketHandle)
sock.unregister()
sock.SocketHandle.close()
# We need to unblock the read and write callbacks which could still be
# waiting for the socket to become readable and/or writeable.
for cb in data.readList & data.writeList:
if not cb(sock):
raise newException(
ValueError, "Expecting async operations to stop when fd has closed."
)
proc runOnce(timeout: int): bool =
let p = getGlobalDispatcher()
if p.selector.isEmpty() and p.timers.len == 0 and p.callbacks.len == 0:
when defined(genode):
if timeout == 0: return
raise newException(ValueError,
"No handles or timers registered in dispatcher.")
result = false
var keys: array[64, ReadyKey]
let nextTimer = processTimers(p, result)
var count =
p.selector.selectInto(adjustTimeout(p, timeout, nextTimer), keys)
for i in 0..<count:
let fd = keys[i].fd.AsyncFD
let events = keys[i].events
var (readCbListCount, writeCbListCount) = (0, 0)
if Event.Read in events or events == {Event.Error}:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Read)
result = true
if Event.Write in events or events == {Event.Error}:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Write)
result = true
var isCustomEvent = false
if Event.User in events:
(readCbListCount, writeCbListCount) =
processBasicCallbacks(fd, Event.Read)
isCustomEvent = true
if readCbListCount == 0:
p.selector.unregister(fd.int)
result = true
when ioselSupportedPlatform:
const customSet = {Event.Timer, Event.Signal, Event.Process,
Event.Vnode}
if (customSet * events) != {}:
isCustomEvent = true
processCustomCallbacks(p, fd)
result = true
# because state `data` can be modified in callback we need to update
# descriptor events with currently registered callbacks.
if not isCustomEvent and (readCbListCount != -1 and writeCbListCount != -1):
var newEvents: set[Event] = {}
if readCbListCount > 0: incl(newEvents, Event.Read)
if writeCbListCount > 0: incl(newEvents, Event.Write)
p.selector.updateHandle(SocketHandle(fd), newEvents)
# Timer processing.
discard processTimers(p, result)
# Callback queue processing
processPendingCallbacks(p, result)
proc recv*(socket: AsyncFD, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[string]) =
var retFuture = newFuture[string]("recv")
var readBuffer = newString(size)
proc cb(sock: AsyncFD): bool =
result = true
let res = recv(sock.SocketHandle, addr readBuffer[0], size.cint,
flags.toOSFlags())
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete("")
else:
retFuture.fail(newOSError(lastError))
else:
result = false # We still want this callback to be called.
elif res == 0:
# Disconnected
retFuture.complete("")
else:
readBuffer.setLen(res)
retFuture.complete(readBuffer)
# TODO: The following causes a massive slowdown.
#if not cb(socket):
addRead(socket, cb)
return retFuture
proc recvInto*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
var retFuture = newFuture[int]("recvInto")
proc cb(sock: AsyncFD): bool =
result = true
let res = recv(sock.SocketHandle, buf, size.cint,
flags.toOSFlags())
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete(0)
else:
retFuture.fail(newOSError(lastError))
else:
result = false # We still want this callback to be called.
else:
retFuture.complete(res)
# TODO: The following causes a massive slowdown.
#if not cb(socket):
addRead(socket, cb)
return retFuture
proc send*(socket: AsyncFD, buf: pointer, size: int,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
var retFuture = newFuture[void]("send")
var written = 0
proc cb(sock: AsyncFD): bool =
result = true
let netSize = size-written
var d = cast[cstring](buf)
let res = send(sock.SocketHandle, addr d[written], netSize.cint,
MSG_NOSIGNAL)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and
lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
if flags.isDisconnectionError(lastError):
retFuture.complete()
else:
retFuture.fail(newOSError(lastError))
else:
result = false # We still want this callback to be called.
else:
written.inc(res)
if res != netSize:
result = false # We still have data to send.
else:
retFuture.complete()
# TODO: The following causes crashes.
#if not cb(socket):
addWrite(socket, cb)
return retFuture
proc sendTo*(socket: AsyncFD, data: pointer, size: int, saddr: ptr SockAddr,
saddrLen: SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` of size `size` in bytes to specified destination
## (`saddr` of size `saddrLen` in bytes, using socket `socket`.
## The returned future will complete once all data has been sent.
var retFuture = newFuture[void]("sendTo")
# we will preserve address in our stack
var staddr: array[128, char] # SOCKADDR_STORAGE size is 128 bytes
var stalen = saddrLen
zeroMem(addr(staddr[0]), 128)
copyMem(addr(staddr[0]), saddr, saddrLen)
proc cb(sock: AsyncFD): bool =
result = true
let res = sendto(sock.SocketHandle, data, size, MSG_NOSIGNAL,
cast[ptr SockAddr](addr(staddr[0])), stalen)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
retFuture.fail(newOSError(lastError))
else:
result = false # We still want this callback to be called.
else:
retFuture.complete()
addWrite(socket, cb)
return retFuture
proc recvFromInto*(socket: AsyncFD, data: pointer, size: int,
saddr: ptr SockAddr, saddrLen: ptr SockLen,
flags = {SocketFlag.SafeDisconn}): owned(Future[int]) =
## Receives a datagram data from `socket` into `data`, which must
## be at least of size `size` in bytes, address of datagram's sender
## will be stored into `saddr` and `saddrLen`. Returned future will
## complete once one datagram has been received, and will return size
## of packet received.
var retFuture = newFuture[int]("recvFromInto")
proc cb(sock: AsyncFD): bool =
result = true
let res = recvfrom(sock.SocketHandle, data, size.cint, flags.toOSFlags(),
saddr, saddrLen)
if res < 0:
let lastError = osLastError()
if lastError.int32 != EINTR and lastError.int32 != EWOULDBLOCK and
lastError.int32 != EAGAIN:
retFuture.fail(newOSError(lastError))
else:
result = false
else:
retFuture.complete(res)
addRead(socket, cb)
return retFuture
proc acceptAddr*(socket: AsyncFD, flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)):
owned(Future[tuple[address: string, client: AsyncFD]]) =
var retFuture = newFuture[tuple[address: string,
client: AsyncFD]]("acceptAddr")
proc cb(sock: AsyncFD): bool {.gcsafe.} =
result = true
var sockAddress: Sockaddr_storage
var addrLen = sizeof(sockAddress).SockLen
var client =
when declared(accept4):
accept4(sock.SocketHandle, cast[ptr SockAddr](addr(sockAddress)),
addr(addrLen), if inheritable: 0 else: SOCK_CLOEXEC)
else:
accept(sock.SocketHandle, cast[ptr SockAddr](addr(sockAddress)),
addr(addrLen))
when declared(setInheritable) and not declared(accept4):
if client != osInvalidSocket and not setInheritable(client, inheritable):
# Set failure first because close() itself can fail,
# altering osLastError().
retFuture.fail(newOSError(osLastError()))
close client
return false
if client == osInvalidSocket:
let lastError = osLastError()
assert lastError.int32 != EWOULDBLOCK and lastError.int32 != EAGAIN
if lastError.int32 == EINTR:
return false
else:
if flags.isDisconnectionError(lastError):
return false
else:
retFuture.fail(newOSError(lastError))
else:
try:
let address = getAddrString(cast[ptr SockAddr](addr sockAddress))
register(client.AsyncFD)
retFuture.complete((address, client.AsyncFD))
except:
# getAddrString may raise
client.close()
retFuture.fail(getCurrentException())
addRead(socket, cb)
return retFuture
when ioselSupportedPlatform:
proc addTimer*(timeout: int, oneshot: bool, cb: Callback) =
## Start watching for timeout expiration, and then call the
## callback `cb`.
## `timeout` - time in milliseconds,
## `oneshot` - if `true` only one event will be dispatched,
## if `false` continuous events every `timeout` milliseconds.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerTimer(timeout, oneshot, data)
proc addSignal*(signal: int, cb: Callback) =
## Start watching signal `signal`, and when signal appears, call the
## callback `cb`.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerSignal(signal, data)
proc addProcess*(pid: int, cb: Callback) =
## Start watching for process exit with pid `pid`, and then call
## the callback `cb`.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerProcess(pid, data)
proc newAsyncEvent*(): AsyncEvent =
## Creates new `AsyncEvent`.
result = AsyncEvent(newSelectEvent())
proc trigger*(ev: AsyncEvent) =
## Sets new `AsyncEvent` to signaled state.
trigger(SelectEvent(ev))
proc close*(ev: AsyncEvent) =
## Closes `AsyncEvent`
close(SelectEvent(ev))
proc addEvent*(ev: AsyncEvent, cb: Callback) =
## Start watching for event `ev`, and call callback `cb`, when
## ev will be set to signaled state.
let p = getGlobalDispatcher()
var data = newAsyncData()
data.readList.add(cb)
p.selector.registerEvent(SelectEvent(ev), data)
proc drain*(timeout = 500) =
## Waits for completion of **all** events and processes them. Raises `ValueError`
## if there are no pending operations. In contrast to `poll` this
## processes as many events as are available until the timeout has elapsed.
var curTimeout = timeout
let start = now()
while hasPendingOperations():
discard runOnce(curTimeout)
curTimeout -= (now() - start).inMilliseconds.int
if curTimeout < 0:
break
proc poll*(timeout = 500) =
## Waits for completion events and processes them. Raises `ValueError`
## if there are no pending operations. This runs the underlying OS
## `epoll`:idx: or `kqueue`:idx: primitive only once.
discard runOnce(timeout)
template createAsyncNativeSocketImpl(domain, sockType, protocol: untyped,
inheritable = defined(nimInheritHandles)) =
let handle = createNativeSocket(domain, sockType, protocol, inheritable)
if handle == osInvalidSocket:
return osInvalidSocket.AsyncFD
handle.setBlocking(false)
when defined(macosx) and not defined(nimdoc):
handle.setSockOptInt(SOL_SOCKET, SO_NOSIGPIPE, 1)
result = handle.AsyncFD
register(result)
proc createAsyncNativeSocket*(domain: cint, sockType: cint,
protocol: cint,
inheritable = defined(nimInheritHandles)): AsyncFD =
createAsyncNativeSocketImpl(domain, sockType, protocol, inheritable)
proc createAsyncNativeSocket*(domain: Domain = Domain.AF_INET,
sockType: SockType = SOCK_STREAM,
protocol: Protocol = IPPROTO_TCP,
inheritable = defined(nimInheritHandles)): AsyncFD =
createAsyncNativeSocketImpl(domain, sockType, protocol, inheritable)
when defined(windows) or defined(nimdoc):
proc bindToDomain(handle: SocketHandle, domain: Domain) =
# Extracted into a separate proc, because connect() on Windows requires
# the socket to be initially bound.
template doBind(saddr) =
if bindAddr(handle, cast[ptr SockAddr](addr(saddr)),
sizeof(saddr).SockLen) < 0'i32:
raiseOSError(osLastError())
if domain == Domain.AF_INET6:
var saddr: Sockaddr_in6
saddr.sin6_family = uint16(toInt(domain))
doBind(saddr)
else:
var saddr: Sockaddr_in
saddr.sin_family = uint16(toInt(domain))
doBind(saddr)
proc doConnect(socket: AsyncFD, addrInfo: ptr AddrInfo): owned(Future[void]) =
let retFuture = newFuture[void]("doConnect")
result = retFuture
var ol = newCustom()
ol.data = CompletionData(fd: socket, cb:
proc (fd: AsyncFD, bytesCount: DWORD, errcode: OSErrorCode) =
if not retFuture.finished:
if errcode == OSErrorCode(-1):
const SO_UPDATE_CONNECT_CONTEXT = 0x7010
socket.SocketHandle.setSockOptInt(SOL_SOCKET, SO_UPDATE_CONNECT_CONTEXT, 1) # 15022
retFuture.complete()
else:
retFuture.fail(newOSError(errcode))
)
let ret = connectEx(socket.SocketHandle, addrInfo.ai_addr,
cint(addrInfo.ai_addrlen), nil, 0, nil,
cast[POVERLAPPED](ol))
if ret:
# Request to connect completed immediately.
retFuture.complete()
# We don't deallocate `ol` here because even though this completed
# immediately poll will still be notified about its completion and it
# will free `ol`.
else:
let lastError = osLastError()
if lastError.int32 != ERROR_IO_PENDING:
# With ERROR_IO_PENDING `ol` will be deallocated in `poll`,
# and the future will be completed/failed there, too.
GC_unref(ol)
retFuture.fail(newOSError(lastError))
else:
proc doConnect(socket: AsyncFD, addrInfo: ptr AddrInfo): owned(Future[void]) =
let retFuture = newFuture[void]("doConnect")
result = retFuture
proc cb(fd: AsyncFD): bool =
let ret = SocketHandle(fd).getSockOptInt(
cint(SOL_SOCKET), cint(SO_ERROR))
if ret == 0:
# We have connected.
retFuture.complete()
return true
elif ret == EINTR:
# interrupted, keep waiting
return false
else:
retFuture.fail(newOSError(OSErrorCode(ret)))
return true
let ret = connect(socket.SocketHandle,
addrInfo.ai_addr,
addrInfo.ai_addrlen.SockLen)
if ret == 0:
# Request to connect completed immediately.
retFuture.complete()
else:
let lastError = osLastError()
if lastError.int32 == EINTR or lastError.int32 == EINPROGRESS:
addWrite(socket, cb)
else:
retFuture.fail(newOSError(lastError))
template asyncAddrInfoLoop(addrInfo: ptr AddrInfo, fd: untyped,
protocol: Protocol = IPPROTO_RAW) =
## Iterates through the AddrInfo linked list asynchronously
## until the connection can be established.
const shouldCreateFd = not declared(fd)
when shouldCreateFd:
let sockType = protocol.toSockType()
var fdPerDomain: array[low(Domain).ord..high(Domain).ord, AsyncFD]
for i in low(fdPerDomain)..high(fdPerDomain):
fdPerDomain[i] = osInvalidSocket.AsyncFD
template closeUnusedFds(domainToKeep = -1) {.dirty.} =
for i, fd in fdPerDomain:
if fd != osInvalidSocket.AsyncFD and i != domainToKeep:
fd.closeSocket()
var lastException: ref Exception
var curAddrInfo = addrInfo
var domain: Domain
when shouldCreateFd:
var curFd: AsyncFD
else:
var curFd = fd
proc tryNextAddrInfo(fut: Future[void]) {.gcsafe.} =
if fut == nil or fut.failed:
if fut != nil:
lastException = fut.readError()
while curAddrInfo != nil:
let domainOpt = curAddrInfo.ai_family.toKnownDomain()
if domainOpt.isSome:
domain = domainOpt.unsafeGet()
break
curAddrInfo = curAddrInfo.ai_next
if curAddrInfo == nil:
freeAddrInfo(addrInfo)
when shouldCreateFd:
closeUnusedFds()
if lastException != nil:
retFuture.fail(lastException)
else:
retFuture.fail(newException(
IOError, "Couldn't resolve address: " & address))
return
when shouldCreateFd:
curFd = fdPerDomain[ord(domain)]
if curFd == osInvalidSocket.AsyncFD:
try:
curFd = createAsyncNativeSocket(domain, sockType, protocol)
except:
freeAddrInfo(addrInfo)
closeUnusedFds()
raise getCurrentException()
when defined(windows):
curFd.SocketHandle.bindToDomain(domain)
fdPerDomain[ord(domain)] = curFd
doConnect(curFd, curAddrInfo).callback = tryNextAddrInfo
curAddrInfo = curAddrInfo.ai_next
else:
freeAddrInfo(addrInfo)
when shouldCreateFd:
closeUnusedFds(ord(domain))
retFuture.complete(curFd)
else:
retFuture.complete()
tryNextAddrInfo(nil)
proc dial*(address: string, port: Port,
protocol: Protocol = IPPROTO_TCP): owned(Future[AsyncFD]) =
## Establishes connection to the specified `address`:`port` pair via the
## specified protocol. The procedure iterates through possible
## resolutions of the `address` until it succeeds, meaning that it
## seamlessly works with both IPv4 and IPv6.
## Returns the async file descriptor, registered in the dispatcher of
## the current thread, ready to send or receive data.
let retFuture = newFuture[AsyncFD]("dial")
result = retFuture
let sockType = protocol.toSockType()
let aiList = getAddrInfo(address, port, Domain.AF_UNSPEC, sockType, protocol)
asyncAddrInfoLoop(aiList, noFD, protocol)
proc connect*(socket: AsyncFD, address: string, port: Port,
domain = Domain.AF_INET): owned(Future[void]) =
let retFuture = newFuture[void]("connect")
result = retFuture
when defined(windows):
verifyPresence(socket)
else:
assert getSockDomain(socket.SocketHandle) == domain
let aiList = getAddrInfo(address, port, domain)
when defined(windows):
socket.SocketHandle.bindToDomain(domain)
asyncAddrInfoLoop(aiList, socket)
proc sleepAsync*(ms: int | float): owned(Future[void]) =
## Suspends the execution of the current async procedure for the next
## `ms` milliseconds.
var retFuture = newFuture[void]("sleepAsync")
let p = getGlobalDispatcher()
when ms is int:
p.timers.push((getMonoTime() + initDuration(milliseconds = ms), retFuture))
elif ms is float:
let ns = (ms * 1_000_000).int64
p.timers.push((getMonoTime() + initDuration(nanoseconds = ns), retFuture))
return retFuture
proc withTimeout*[T](fut: Future[T], timeout: int): owned(Future[bool]) =
## Returns a future which will complete once `fut` completes or after
## `timeout` milliseconds has elapsed.
##
## If `fut` completes first the returned future will hold true,
## otherwise, if `timeout` milliseconds has elapsed first, the returned
## future will hold false.
var retFuture = newFuture[bool]("asyncdispatch.`withTimeout`")
var timeoutFuture = sleepAsync(timeout)
fut.callback =
proc () =
if not retFuture.finished:
if fut.failed:
retFuture.fail(fut.error)
else:
retFuture.complete(true)
timeoutFuture.callback =
proc () =
if not retFuture.finished: retFuture.complete(false)
return retFuture
proc accept*(socket: AsyncFD,
flags = {SocketFlag.SafeDisconn},
inheritable = defined(nimInheritHandles)): owned(Future[AsyncFD]) =
## Accepts a new connection. Returns a future containing the client socket
## corresponding to that connection.
##
## If `inheritable` is false (the default), the resulting client socket
## will not be inheritable by child processes.
##
## The future will complete when the connection is successfully accepted.
var retFut = newFuture[AsyncFD]("accept")
var fut = acceptAddr(socket, flags, inheritable)
fut.callback =
proc (future: Future[tuple[address: string, client: AsyncFD]]) =
assert future.finished
if future.failed:
retFut.fail(future.error)
else:
retFut.complete(future.read.client)
return retFut
proc keepAlive(x: string) =
discard "mark 'x' as escaping so that it is put into a closure for us to keep the data alive"
proc send*(socket: AsyncFD, data: string,
flags = {SocketFlag.SafeDisconn}): owned(Future[void]) =
## Sends `data` to `socket`. The returned future will complete once all
## data has been sent.
var retFuture = newFuture[void]("send")
if data.len > 0:
let sendFut = socket.send(unsafeAddr data[0], data.len, flags)
sendFut.callback =
proc () =
keepAlive(data)
if sendFut.failed:
retFuture.fail(sendFut.error)
else:
retFuture.complete()
else:
retFuture.complete()
return retFuture
# -- Await Macro
import std/asyncmacro
export asyncmacro
proc readAll*(future: FutureStream[string]): owned(Future[string]) {.async.} =
## Returns a future that will complete when all the string data from the
## specified future stream is retrieved.
result = ""
while true:
let (hasValue, value) = await future.read()
if hasValue:
result.add(value)
else:
break
proc callSoon(cbproc: proc () {.gcsafe.}) =
getGlobalDispatcher().callbacks.addLast(cbproc)
proc runForever*() =
## Begins a never ending global dispatcher poll loop.
while true:
poll()
proc waitFor*[T](fut: Future[T]): T =
## **Blocks** the current thread until the specified future completes.
while not fut.finished:
poll()
fut.read
proc activeDescriptors*(): int {.inline.} =
## Returns the current number of active file descriptors for the current
## event loop. This is a cheap operation that does not involve a system call.
when defined(windows):
result = getGlobalDispatcher().handles.len
elif not defined(nimdoc):
result = getGlobalDispatcher().selector.count
when defined(posix):
import std/posix
when defined(linux) or defined(windows) or defined(macosx) or defined(bsd) or
defined(solaris) or defined(zephyr) or defined(freertos) or defined(nuttx) or defined(haiku):
proc maxDescriptors*(): int {.raises: OSError.} =
## Returns the maximum number of active file descriptors for the current
## process. This involves a system call. For now `maxDescriptors` is
## supported on the following OSes: Windows, Linux, OSX, BSD, Solaris.
when defined(windows):
result = 16_700_000
elif defined(zephyr) or defined(freertos):
result = FD_MAX
else:
var fdLim: RLimit
if getrlimit(RLIMIT_NOFILE, fdLim) < 0:
raiseOSError(osLastError())
result = int(fdLim.rlim_cur) - 1
when defined(genode):
proc scheduleCallbacks*(): bool {.discardable.} =
## *Genode only.*
## Schedule callback processing and return immediately.
## Returns `false` if there is nothing to schedule.
## RPC servers should call this to dispatch `callSoon`
## bodies after retiring an RPC to its client.
## This is effectively a non-blocking `poll(…)` and is
## equivalent to scheduling a momentary no-op timeout
## but faster and with less overhead.
let dis = getGlobalDispatcher()
result = dis.callbacks.len > 0
if result: submit(dis.signalHandler.cap)
|