1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
{.deprecated: "use the nimble packages `malebolgia`, `taskpools` or `weave` instead".}
## Implements Nim's `parallel & spawn statements <manual_experimental.html#parallel-amp-spawn>`_.
##
## Unstable API.
##
## See also
## ========
## * `threads module <typedthreads.html>`_ for basic thread support
## * `locks module <locks.html>`_ for locks and condition variables
## * `asyncdispatch module <asyncdispatch.html>`_ for asynchronous IO
when not compileOption("threads"):
{.error: "Threadpool requires --threads:on option.".}
import std/[cpuinfo, cpuload, locks, os]
when defined(nimPreviewSlimSystem):
import std/[assertions, typedthreads, sysatomics]
{.push stackTrace:off.}
type
Semaphore = object
c: Cond
L: Lock
counter: int
proc initSemaphore(cv: var Semaphore) =
initCond(cv.c)
initLock(cv.L)
proc destroySemaphore(cv: var Semaphore) {.inline.} =
deinitCond(cv.c)
deinitLock(cv.L)
proc blockUntil(cv: var Semaphore) =
acquire(cv.L)
while cv.counter <= 0:
wait(cv.c, cv.L)
dec cv.counter
release(cv.L)
proc signal(cv: var Semaphore) =
acquire(cv.L)
inc cv.counter
release(cv.L)
signal(cv.c)
const CacheLineSize = 64 # true for most archs
type
Barrier {.compilerproc.} = object
entered: int
cv: Semaphore # Semaphore takes 3 words at least
left {.align(CacheLineSize).}: int
interest {.align(CacheLineSize).} : bool # whether the master is interested in the "all done" event
proc barrierEnter(b: ptr Barrier) {.compilerproc, inline.} =
# due to the signaling between threads, it is ensured we are the only
# one with access to 'entered' so we don't need 'atomicInc' here:
inc b.entered
# also we need no 'fence' instructions here as soon 'nimArgsPassingDone'
# will be called which already will perform a fence for us.
proc barrierLeave(b: ptr Barrier) {.compilerproc, inline.} =
atomicInc b.left
when not defined(x86): fence()
# We may not have seen the final value of b.entered yet,
# so we need to check for >= instead of ==.
if b.interest and b.left >= b.entered: signal(b.cv)
proc openBarrier(b: ptr Barrier) {.compilerproc, inline.} =
b.entered = 0
b.left = 0
b.interest = false
proc closeBarrier(b: ptr Barrier) {.compilerproc.} =
fence()
if b.left != b.entered:
b.cv.initSemaphore()
fence()
b.interest = true
fence()
while b.left != b.entered: blockUntil(b.cv)
destroySemaphore(b.cv)
{.pop.}
# ----------------------------------------------------------------------------
type
AwaitInfo = object
cv: Semaphore
idx: int
FlowVarBase* = ref FlowVarBaseObj ## Untyped base class for `FlowVar[T] <#FlowVar>`_.
FlowVarBaseObj {.acyclic.} = object of RootObj
ready, usesSemaphore, awaited: bool
cv: Semaphore # for 'blockUntilAny' support
ai: ptr AwaitInfo
idx: int
data: pointer # we incRef and unref it to keep it alive; note this MUST NOT
# be RootRef here otherwise the wrong GC keeps track of it!
owner: pointer # ptr Worker
FlowVarObj[T] {.acyclic.} = object of FlowVarBaseObj
blob: T
FlowVar*[T] {.compilerproc.} = ref FlowVarObj[T] ## A data flow variable.
ToFreeQueue = object
len: int
lock: Lock
empty: Semaphore
data: array[128, pointer]
WorkerProc = proc (thread, args: pointer) {.nimcall, gcsafe.}
Worker = object
taskArrived: Semaphore
taskStarted: Semaphore #\
# task data:
f: WorkerProc
data: pointer
ready: bool # put it here for correct alignment!
initialized: bool # whether it has even been initialized
shutdown: bool # the pool requests to shut down this worker thread
q: ToFreeQueue
readyForTask: Semaphore
const threadpoolWaitMs {.intdefine.}: int = 100
proc blockUntil*(fv: var FlowVarBaseObj) =
## Waits until the value for `fv` arrives.
##
## Usually it is not necessary to call this explicitly.
if fv.usesSemaphore and not fv.awaited:
fv.awaited = true
blockUntil(fv.cv)
destroySemaphore(fv.cv)
proc selectWorker(w: ptr Worker; fn: WorkerProc; data: pointer): bool =
if cas(addr w.ready, true, false):
w.data = data
w.f = fn
signal(w.taskArrived)
blockUntil(w.taskStarted)
result = true
proc cleanFlowVars(w: ptr Worker) =
let q = addr(w.q)
acquire(q.lock)
for i in 0 ..< q.len:
GC_unref(cast[RootRef](q.data[i]))
#echo "GC_unref"
q.len = 0
release(q.lock)
proc wakeupWorkerToProcessQueue(w: ptr Worker) =
# we have to ensure it's us who wakes up the owning thread.
# This is quite horrible code, but it runs so rarely that it doesn't matter:
while not cas(addr w.ready, true, false):
cpuRelax()
discard
w.data = nil
w.f = proc (w, a: pointer) {.nimcall.} =
let w = cast[ptr Worker](w)
cleanFlowVars(w)
signal(w.q.empty)
signal(w.taskArrived)
proc attach(fv: FlowVarBase; i: int): bool =
acquire(fv.cv.L)
if fv.cv.counter <= 0:
fv.idx = i
result = true
else:
result = false
release(fv.cv.L)
proc finished(fv: var FlowVarBaseObj) =
doAssert fv.ai.isNil, "flowVar is still attached to an 'blockUntilAny'"
# we have to protect against the rare cases where the owner of the flowVar
# simply disregards the flowVar and yet the "flowVar" has not yet written
# anything to it:
blockUntil(fv)
if fv.data.isNil: return
let owner = cast[ptr Worker](fv.owner)
let q = addr(owner.q)
acquire(q.lock)
while not (q.len < q.data.len):
#echo "EXHAUSTED!"
release(q.lock)
wakeupWorkerToProcessQueue(owner)
blockUntil(q.empty)
acquire(q.lock)
q.data[q.len] = cast[pointer](fv.data)
inc q.len
release(q.lock)
fv.data = nil
# the worker thread waits for "data" to be set to nil before shutting down
owner.data = nil
proc `=destroy`[T](fv: var FlowVarObj[T]) =
finished(fv)
`=destroy`(fv.blob)
proc nimCreateFlowVar[T](): FlowVar[T] {.compilerproc.} =
new(result)
proc nimFlowVarCreateSemaphore(fv: FlowVarBase) {.compilerproc.} =
fv.cv.initSemaphore()
fv.usesSemaphore = true
proc nimFlowVarSignal(fv: FlowVarBase) {.compilerproc.} =
if fv.ai != nil:
acquire(fv.ai.cv.L)
fv.ai.idx = fv.idx
inc fv.ai.cv.counter
release(fv.ai.cv.L)
signal(fv.ai.cv.c)
if fv.usesSemaphore:
signal(fv.cv)
proc awaitAndThen*[T](fv: FlowVar[T]; action: proc (x: T) {.closure.}) =
## Blocks until `fv` is available and then passes its value
## to `action`.
##
## Note that due to Nim's parameter passing semantics, this
## means that `T` doesn't need to be copied, so `awaitAndThen` can
## sometimes be more efficient than the `^ proc <#^,FlowVar[T]>`_.
blockUntil(fv[])
when defined(nimV2):
action(fv.blob)
elif T is string or T is seq:
action(cast[T](fv.data))
elif T is ref:
{.error: "'awaitAndThen' not available for FlowVar[ref]".}
else:
action(fv.blob)
finished(fv[])
proc unsafeRead*[T](fv: FlowVar[ref T]): ptr T =
## Blocks until the value is available and then returns this value.
blockUntil(fv[])
when defined(nimV2):
result = cast[ptr T](fv.blob)
else:
result = cast[ptr T](fv.data)
finished(fv[])
proc `^`*[T](fv: FlowVar[T]): T =
## Blocks until the value is available and then returns this value.
blockUntil(fv[])
when not defined(nimV2) and (T is string or T is seq or T is ref):
deepCopy result, cast[T](fv.data)
else:
result = fv.blob
finished(fv[])
proc blockUntilAny*(flowVars: openArray[FlowVarBase]): int =
## Awaits any of the given `flowVars`. Returns the index of one `flowVar`
## for which a value arrived.
##
## A `flowVar` only supports one call to `blockUntilAny` at the same time.
## That means if you `blockUntilAny([a,b])` and `blockUntilAny([b,c])`
## the second call will only block until `c`. If there is no `flowVar` left
## to be able to wait on, -1 is returned.
##
## **Note:** This results in non-deterministic behaviour and should be avoided.
var ai: AwaitInfo
ai.cv.initSemaphore()
var conflicts = 0
result = -1
for i in 0 .. flowVars.high:
if cas(addr flowVars[i].ai, nil, addr ai):
if not attach(flowVars[i], i):
result = i
break
else:
inc conflicts
if conflicts < flowVars.len:
if result < 0:
blockUntil(ai.cv)
result = ai.idx
for i in 0 .. flowVars.high:
discard cas(addr flowVars[i].ai, addr ai, nil)
destroySemaphore(ai.cv)
proc isReady*(fv: FlowVarBase): bool =
## Determines whether the specified `FlowVarBase`'s value is available.
##
## If `true`, awaiting `fv` will not block.
if fv.usesSemaphore and not fv.awaited:
acquire(fv.cv.L)
result = fv.cv.counter > 0
release(fv.cv.L)
else:
result = true
proc nimArgsPassingDone(p: pointer) {.compilerproc.} =
let w = cast[ptr Worker](p)
signal(w.taskStarted)
const
MaxThreadPoolSize* {.intdefine.} = 256 ## Maximum size of the thread pool. 256 threads
## should be good enough for anybody ;-)
MaxDistinguishedThread* {.intdefine.} = 32 ## Maximum number of "distinguished" threads.
type
ThreadId* = range[0..MaxDistinguishedThread-1] ## A thread identifier.
var
currentPoolSize: int
maxPoolSize = MaxThreadPoolSize
minPoolSize = 4
gSomeReady: Semaphore
readyWorker: ptr Worker
# A workaround for recursion deadlock issue
# https://github.com/nim-lang/Nim/issues/4597
var
numSlavesLock: Lock
numSlavesRunning {.guard: numSlavesLock.}: int
numSlavesWaiting {.guard: numSlavesLock.}: int
isSlave {.threadvar.}: bool
numSlavesLock.initLock
gSomeReady.initSemaphore()
proc slave(w: ptr Worker) {.thread.} =
isSlave = true
while true:
if w.shutdown:
w.shutdown = false
atomicDec currentPoolSize
while true:
if w.data != nil:
sleep(threadpoolWaitMs)
else:
# The flowvar finalizer ("finished()") set w.data to nil, so we can
# safely terminate the thread.
#
# TODO: look for scenarios in which the flowvar is never finalized, so
# a shut down thread gets stuck in this loop until the main thread exits.
break
break
when declared(atomicStoreN):
atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
else:
w.ready = true
readyWorker = w
signal(gSomeReady)
blockUntil(w.taskArrived)
# XXX Somebody needs to look into this (why does this assertion fail
# in Visual Studio?)
when not defined(vcc) and not defined(tcc): assert(not w.ready)
withLock numSlavesLock:
inc numSlavesRunning
w.f(w, w.data)
withLock numSlavesLock:
dec numSlavesRunning
if w.q.len != 0: w.cleanFlowVars
proc distinguishedSlave(w: ptr Worker) {.thread.} =
while true:
when declared(atomicStoreN):
atomicStoreN(addr(w.ready), true, ATOMIC_SEQ_CST)
else:
w.ready = true
signal(w.readyForTask)
blockUntil(w.taskArrived)
assert(not w.ready)
w.f(w, w.data)
if w.q.len != 0: w.cleanFlowVars
var
workers: array[MaxThreadPoolSize, Thread[ptr Worker]]
workersData: array[MaxThreadPoolSize, Worker]
distinguished: array[MaxDistinguishedThread, Thread[ptr Worker]]
distinguishedData: array[MaxDistinguishedThread, Worker]
when defined(nimPinToCpu):
var gCpus: Natural
proc setMinPoolSize*(size: range[1..MaxThreadPoolSize]) =
## Sets the minimum thread pool size. The default value of this is 4.
minPoolSize = size
proc setMaxPoolSize*(size: range[1..MaxThreadPoolSize]) =
## Sets the maximum thread pool size. The default value of this
## is `MaxThreadPoolSize <#MaxThreadPoolSize>`_.
maxPoolSize = size
if currentPoolSize > maxPoolSize:
for i in maxPoolSize..currentPoolSize-1:
let w = addr(workersData[i])
w.shutdown = true
when defined(nimRecursiveSpawn):
var localThreadId {.threadvar.}: int
proc activateWorkerThread(i: int) {.noinline.} =
workersData[i].taskArrived.initSemaphore()
workersData[i].taskStarted.initSemaphore()
workersData[i].initialized = true
workersData[i].q.empty.initSemaphore()
initLock(workersData[i].q.lock)
createThread(workers[i], slave, addr(workersData[i]))
when defined(nimRecursiveSpawn):
localThreadId = i+1
when defined(nimPinToCpu):
if gCpus > 0: pinToCpu(workers[i], i mod gCpus)
proc activateDistinguishedThread(i: int) {.noinline.} =
distinguishedData[i].taskArrived.initSemaphore()
distinguishedData[i].taskStarted.initSemaphore()
distinguishedData[i].initialized = true
distinguishedData[i].q.empty.initSemaphore()
initLock(distinguishedData[i].q.lock)
distinguishedData[i].readyForTask.initSemaphore()
createThread(distinguished[i], distinguishedSlave, addr(distinguishedData[i]))
proc setup() =
let p = countProcessors()
when defined(nimPinToCpu):
gCpus = p
currentPoolSize = min(p, MaxThreadPoolSize)
readyWorker = addr(workersData[0])
for i in 0..<currentPoolSize: activateWorkerThread(i)
proc preferSpawn*(): bool =
## Use this proc to determine quickly if a `spawn` or a direct call is
## preferable.
##
## If it returns `true`, a `spawn` may make sense. In general
## it is not necessary to call this directly; use the `spawnX template
## <#spawnX.t>`_ instead.
result = gSomeReady.counter > 0
proc spawn*(call: sink typed) {.magic: "Spawn".} =
## Always spawns a new task, so that the `call` is never executed on
## the calling thread.
##
## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a
## return type that is either `void` or compatible with `FlowVar[T]`.
discard "It uses `nimSpawn3` internally"
proc pinnedSpawn*(id: ThreadId; call: sink typed) {.magic: "Spawn".} =
## Always spawns a new task on the worker thread with `id`, so that
## the `call` is **always** executed on the thread.
##
## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a
## return type that is either `void` or compatible with `FlowVar[T]`.
discard "It uses `nimSpawn4` internally"
template spawnX*(call) =
## Spawns a new task if a CPU core is ready, otherwise executes the
## call in the calling thread.
##
## Usually, it is advised to use the `spawn proc <#spawn,sinktyped>`_
## in order to not block the producer for an unknown amount of time.
##
## `call` has to be a proc call `p(...)` where `p` is gcsafe and has a
## return type that is either 'void' or compatible with `FlowVar[T]`.
(if preferSpawn(): spawn call else: call)
proc parallel*(body: untyped) {.magic: "Parallel".}
## A parallel section can be used to execute a block in parallel.
##
## `body` has to be in a DSL that is a particular subset of the language.
##
## Please refer to `the manual <manual_experimental.html#parallel-amp-spawn>`_
## for further information.
var
state: ThreadPoolState
stateLock: Lock
initLock stateLock
proc nimSpawn3(fn: WorkerProc; data: pointer) {.compilerproc.} =
# implementation of 'spawn' that is used by the code generator.
while true:
if selectWorker(readyWorker, fn, data): return
for i in 0..<currentPoolSize:
if selectWorker(addr(workersData[i]), fn, data): return
# determine what to do, but keep in mind this is expensive too:
# state.calls < maxPoolSize: warmup phase
# (state.calls and 127) == 0: periodic check
if state.calls < maxPoolSize or (state.calls and 127) == 0:
# ensure the call to 'advice' is atomic:
if tryAcquire(stateLock):
if currentPoolSize < minPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
release(stateLock)
return
case advice(state)
of doNothing: discard
of doCreateThread:
if currentPoolSize < maxPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
release(stateLock)
return
# else we didn't succeed but some other thread, so do nothing.
of doShutdownThread:
if currentPoolSize > minPoolSize:
let w = addr(workersData[currentPoolSize-1])
w.shutdown = true
# we don't free anything here. Too dangerous.
release(stateLock)
# else the acquire failed, but this means some
# other thread succeeded, so we don't need to do anything here.
when defined(nimRecursiveSpawn):
if localThreadId > 0:
# we are a worker thread, so instead of waiting for something which
# might as well never happen (see tparallel_quicksort), we run the task
# on the current thread instead.
var self = addr(workersData[localThreadId-1])
fn(self, data)
blockUntil(self.taskStarted)
return
if isSlave:
# Run under lock until `numSlavesWaiting` increment to avoid a
# race (otherwise two last threads might start waiting together)
withLock numSlavesLock:
if numSlavesRunning <= numSlavesWaiting + 1:
# All the other slaves are waiting
# If we wait now, we-re deadlocked until
# an external spawn happens !
if currentPoolSize < maxPoolSize:
if not workersData[currentPoolSize].initialized:
activateWorkerThread(currentPoolSize)
let w = addr(workersData[currentPoolSize])
atomicInc currentPoolSize
if selectWorker(w, fn, data):
return
else:
# There is no place in the pool. We're deadlocked.
# echo "Deadlock!"
discard
inc numSlavesWaiting
blockUntil(gSomeReady)
if isSlave:
withLock numSlavesLock:
dec numSlavesWaiting
var
distinguishedLock: Lock
initLock distinguishedLock
proc nimSpawn4(fn: WorkerProc; data: pointer; id: ThreadId) {.compilerproc.} =
acquire(distinguishedLock)
if not distinguishedData[id].initialized:
activateDistinguishedThread(id)
release(distinguishedLock)
while true:
if selectWorker(addr(distinguishedData[id]), fn, data): break
blockUntil(distinguishedData[id].readyForTask)
proc sync*() =
## A simple barrier to wait for all `spawn`ed tasks.
##
## If you need more elaborate waiting, you have to use an explicit barrier.
while true:
var allReady = true
for i in 0 ..< currentPoolSize:
if not allReady: break
allReady = allReady and workersData[i].ready
if allReady: break
sleep(threadpoolWaitMs)
# We cannot "blockUntil(gSomeReady)" because workers may be shut down between
# the time we establish that some are not "ready" and the time we wait for a
# "signal(gSomeReady)" from inside "slave()" that can never come.
setup()
|