1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Floating-point environment. Handling of floating-point rounding and
## exceptions (overflow, division by zero, etc.).
## The types, vars and procs are bindings for the C standard library
## [<fenv.h>](https://en.cppreference.com/w/c/numeric/fenv) header.
when defined(posix) and not defined(genode) and not defined(macosx):
{.passl: "-lm".}
var
FE_DIVBYZERO* {.importc, header: "<fenv.h>".}: cint
## division by zero
FE_INEXACT* {.importc, header: "<fenv.h>".}: cint
## inexact result
FE_INVALID* {.importc, header: "<fenv.h>".}: cint
## invalid operation
FE_OVERFLOW* {.importc, header: "<fenv.h>".}: cint
## result not representable due to overflow
FE_UNDERFLOW* {.importc, header: "<fenv.h>".}: cint
## result not representable due to underflow
FE_ALL_EXCEPT* {.importc, header: "<fenv.h>".}: cint
## bitwise OR of all supported exceptions
FE_DOWNWARD* {.importc, header: "<fenv.h>".}: cint
## round toward -Inf
FE_TONEAREST* {.importc, header: "<fenv.h>".}: cint
## round to nearest
FE_TOWARDZERO* {.importc, header: "<fenv.h>".}: cint
## round toward 0
FE_UPWARD* {.importc, header: "<fenv.h>".}: cint
## round toward +Inf
FE_DFL_ENV* {.importc, header: "<fenv.h>".}: cint
## macro of type pointer to `fenv_t` to be used as the argument
## to functions taking an argument of type `fenv_t`; in this
## case the default environment will be used
type
Tfenv* {.importc: "fenv_t", header: "<fenv.h>", final, pure.} =
object ## Represents the entire floating-point environment. The
## floating-point environment refers collectively to any
## floating-point status flags and control modes supported
## by the implementation.
Tfexcept* {.importc: "fexcept_t", header: "<fenv.h>", final, pure.} =
object ## Represents the floating-point status flags collectively,
## including any status the implementation associates with the
## flags. A floating-point status flag is a system variable
## whose value is set (but never cleared) when a floating-point
## exception is raised, which occurs as a side effect of
## exceptional floating-point arithmetic to provide auxiliary
## information. A floating-point control mode is a system variable
## whose value may be set by the user to affect the subsequent
## behavior of floating-point arithmetic.
proc feclearexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Clear the supported exceptions represented by `excepts`.
proc fegetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
importc, header: "<fenv.h>".}
## Store implementation-defined representation of the exception flags
## indicated by `excepts` in the object pointed to by `flagp`.
proc feraiseexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Raise the supported exceptions represented by `excepts`.
proc fesetexceptflag*(flagp: ptr Tfexcept, excepts: cint): cint {.
importc, header: "<fenv.h>".}
## Set complete status for exceptions indicated by `excepts` according to
## the representation in the object pointed to by `flagp`.
proc fetestexcept*(excepts: cint): cint {.importc, header: "<fenv.h>".}
## Determine which of subset of the exceptions specified by `excepts` are
## currently set.
proc fegetround*(): cint {.importc, header: "<fenv.h>".}
## Get current rounding direction.
proc fesetround*(roundingDirection: cint): cint {.importc, header: "<fenv.h>".}
## Establish the rounding direction represented by `roundingDirection`.
proc fegetenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Store the current floating-point environment in the object pointed
## to by `envp`.
proc feholdexcept*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Save the current environment in the object pointed to by `envp`, clear
## exception flags and install a non-stop mode (if available) for all
## exceptions.
proc fesetenv*(a1: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Establish the floating-point environment represented by the object
## pointed to by `envp`.
proc feupdateenv*(envp: ptr Tfenv): cint {.importc, header: "<fenv.h>".}
## Save current exceptions in temporary storage, install environment
## represented by object pointed to by `envp` and raise exceptions
## according to saved exceptions.
const
FLT_RADIX = 2 ## the radix of the exponent representation
FLT_MANT_DIG = 24 ## the number of base FLT_RADIX digits in the mantissa part of a float
FLT_DIG = 6 ## the number of digits of precision of a float
FLT_MIN_EXP = -125 ## the minimum value of base FLT_RADIX in the exponent part of a float
FLT_MAX_EXP = 128 ## the maximum value of base FLT_RADIX in the exponent part of a float
FLT_MIN_10_EXP = -37 ## the minimum value in base 10 of the exponent part of a float
FLT_MAX_10_EXP = 38 ## the maximum value in base 10 of the exponent part of a float
FLT_MIN = 1.17549435e-38'f32 ## the minimum value of a float
FLT_MAX = 3.40282347e+38'f32 ## the maximum value of a float
FLT_EPSILON = 1.19209290e-07'f32 ## the difference between 1 and the least value greater than 1 of a float
DBL_MANT_DIG = 53 ## the number of base FLT_RADIX digits in the mantissa part of a double
DBL_DIG = 15 ## the number of digits of precision of a double
DBL_MIN_EXP = -1021 ## the minimum value of base FLT_RADIX in the exponent part of a double
DBL_MAX_EXP = 1024 ## the maximum value of base FLT_RADIX in the exponent part of a double
DBL_MIN_10_EXP = -307 ## the minimum value in base 10 of the exponent part of a double
DBL_MAX_10_EXP = 308 ## the maximum value in base 10 of the exponent part of a double
DBL_MIN = 2.2250738585072014E-308 ## the minimal value of a double
DBL_MAX = 1.7976931348623157E+308 ## the minimal value of a double
DBL_EPSILON = 2.2204460492503131E-16 ## the difference between 1 and the least value greater than 1 of a double
template fpRadix*: int = FLT_RADIX
## The (integer) value of the radix used to represent any floating
## point type on the architecture used to build the program.
template mantissaDigits*(T: typedesc[float32]): int = FLT_MANT_DIG
## Number of digits (in base `floatingPointRadix`) in the mantissa
## of 32-bit floating-point numbers.
template digits*(T: typedesc[float32]): int = FLT_DIG
## Number of decimal digits that can be represented in a
## 32-bit floating-point type without losing precision.
template minExponent*(T: typedesc[float32]): int = FLT_MIN_EXP
## Minimum (negative) exponent for 32-bit floating-point numbers.
template maxExponent*(T: typedesc[float32]): int = FLT_MAX_EXP
## Maximum (positive) exponent for 32-bit floating-point numbers.
template min10Exponent*(T: typedesc[float32]): int = FLT_MIN_10_EXP
## Minimum (negative) exponent in base 10 for 32-bit floating-point
## numbers.
template max10Exponent*(T: typedesc[float32]): int = FLT_MAX_10_EXP
## Maximum (positive) exponent in base 10 for 32-bit floating-point
## numbers.
template minimumPositiveValue*(T: typedesc[float32]): float32 = FLT_MIN
## The smallest positive (nonzero) number that can be represented in a
## 32-bit floating-point type.
template maximumPositiveValue*(T: typedesc[float32]): float32 = FLT_MAX
## The largest positive number that can be represented in a 32-bit
## floating-point type.
template epsilon*(T: typedesc[float32]): float32 = FLT_EPSILON
## The difference between 1.0 and the smallest number greater than
## 1.0 that can be represented in a 32-bit floating-point type.
template mantissaDigits*(T: typedesc[float64]): int = DBL_MANT_DIG
## Number of digits (in base `floatingPointRadix`) in the mantissa
## of 64-bit floating-point numbers.
template digits*(T: typedesc[float64]): int = DBL_DIG
## Number of decimal digits that can be represented in a
## 64-bit floating-point type without losing precision.
template minExponent*(T: typedesc[float64]): int = DBL_MIN_EXP
## Minimum (negative) exponent for 64-bit floating-point numbers.
template maxExponent*(T: typedesc[float64]): int = DBL_MAX_EXP
## Maximum (positive) exponent for 64-bit floating-point numbers.
template min10Exponent*(T: typedesc[float64]): int = DBL_MIN_10_EXP
## Minimum (negative) exponent in base 10 for 64-bit floating-point
## numbers.
template max10Exponent*(T: typedesc[float64]): int = DBL_MAX_10_EXP
## Maximum (positive) exponent in base 10 for 64-bit floating-point
## numbers.
template minimumPositiveValue*(T: typedesc[float64]): float64 = DBL_MIN
## The smallest positive (nonzero) number that can be represented in a
## 64-bit floating-point type.
template maximumPositiveValue*(T: typedesc[float64]): float64 = DBL_MAX
## The largest positive number that can be represented in a 64-bit
## floating-point type.
template epsilon*(T: typedesc[float64]): float64 = DBL_EPSILON
## The difference between 1.0 and the smallest number greater than
## 1.0 that can be represented in a 64-bit floating-point type.
|