1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## *Constructive mathematics is naturally typed.* -- Simon Thompson
##
## Basic math routines for Nim.
##
## Note that the trigonometric functions naturally operate on radians.
## The helper functions `degToRad <#degToRad,T>`_ and `radToDeg <#radToDeg,T>`_
## provide conversion between radians and degrees.
runnableExamples:
from std/fenv import epsilon
from std/random import rand
proc generateGaussianNoise(mu: float = 0.0, sigma: float = 1.0): (float, float) =
# Generates values from a normal distribution.
# Translated from https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform#Implementation.
var u1: float
var u2: float
while true:
u1 = rand(1.0)
u2 = rand(1.0)
if u1 > epsilon(float): break
let mag = sigma * sqrt(-2 * ln(u1))
let z0 = mag * cos(2 * PI * u2) + mu
let z1 = mag * sin(2 * PI * u2) + mu
(z0, z1)
echo generateGaussianNoise()
## This module is available for the `JavaScript target
## <backends.html#backends-the-javascript-target>`_.
##
## See also
## ========
## * `complex module <complex.html>`_ for complex numbers and their
## mathematical operations
## * `rationals module <rationals.html>`_ for rational numbers and their
## mathematical operations
## * `fenv module <fenv.html>`_ for handling of floating-point rounding
## and exceptions (overflow, zero-divide, etc.)
## * `random module <random.html>`_ for a fast and tiny random number generator
## * `stats module <stats.html>`_ for statistical analysis
## * `strformat module <strformat.html>`_ for formatting floats for printing
## * `system module <system.html>`_ for some very basic and trivial math operators
## (`shr`, `shl`, `xor`, `clamp`, etc.)
import std/private/since
{.push debugger: off.} # the user does not want to trace a part
# of the standard library!
import std/[bitops, fenv]
import system/countbits_impl
when defined(nimPreviewSlimSystem):
import std/assertions
when not defined(js) and not defined(nimscript): # C
proc c_isnan(x: float): bool {.importc: "isnan", header: "<math.h>".}
# a generic like `x: SomeFloat` might work too if this is implemented via a C macro.
proc c_copysign(x, y: cfloat): cfloat {.importc: "copysignf", header: "<math.h>".}
proc c_copysign(x, y: cdouble): cdouble {.importc: "copysign", header: "<math.h>".}
proc c_signbit(x: SomeFloat): cint {.importc: "signbit", header: "<math.h>".}
# don't export `c_frexp` in the future and remove `c_frexp2`.
func c_frexp2(x: cfloat, exponent: var cint): cfloat {.
importc: "frexpf", header: "<math.h>".}
func c_frexp2(x: cdouble, exponent: var cint): cdouble {.
importc: "frexp", header: "<math.h>".}
type
div_t {.importc, header: "<stdlib.h>".} = object
quot: cint
rem: cint
ldiv_t {.importc, header: "<stdlib.h>".} = object
quot: clong
rem: clong
lldiv_t {.importc, header: "<stdlib.h>".} = object
quot: clonglong
rem: clonglong
when cint isnot clong:
func divmod_c(x, y: cint): div_t {.importc: "div", header: "<stdlib.h>".}
when clong isnot clonglong:
func divmod_c(x, y: clonglong): lldiv_t {.importc: "lldiv", header: "<stdlib.h>".}
func divmod_c(x, y: clong): ldiv_t {.importc: "ldiv", header: "<stdlib.h>".}
func divmod*[T: SomeInteger](x, y: T): (T, T) {.inline.} =
## Specialized instructions for computing both division and modulus.
## Return structure is: (quotient, remainder)
runnableExamples:
doAssert divmod(5, 2) == (2, 1)
doAssert divmod(5, -3) == (-1, 2)
when T is cint | clong | clonglong:
when compileOption("overflowChecks"):
if y == 0:
raise new(DivByZeroDefect)
elif (x == T.low and y == -1.T):
raise new(OverflowDefect)
let res = divmod_c(x, y)
result[0] = res.quot
result[1] = res.rem
else:
result[0] = x div y
result[1] = x mod y
func binom*(n, k: int): int =
## Computes the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient).
runnableExamples:
doAssert binom(6, 2) == 15
doAssert binom(-6, 2) == 1
doAssert binom(6, 0) == 1
if k <= 0: return 1
if 2 * k > n: return binom(n, n - k)
result = n
for i in countup(2, k):
result = (result * (n + 1 - i)) div i
func createFactTable[N: static[int]]: array[N, int] =
result[0] = 1
for i in 1 ..< N:
result[i] = result[i - 1] * i
func fac*(n: int): int =
## Computes the [factorial](https://en.wikipedia.org/wiki/Factorial) of
## a non-negative integer `n`.
##
## **See also:**
## * `prod func <#prod,openArray[T]>`_
runnableExamples:
doAssert fac(0) == 1
doAssert fac(4) == 24
doAssert fac(10) == 3628800
const factTable =
when sizeof(int) == 2:
createFactTable[5]()
elif sizeof(int) == 4:
createFactTable[13]()
else:
createFactTable[21]()
assert(n >= 0, $n & " must not be negative.")
assert(n < factTable.len, $n & " is too large to look up in the table")
factTable[n]
{.push checks: off, line_dir: off, stack_trace: off.}
when defined(posix) and not defined(genode) and not defined(macosx):
{.passl: "-lm".}
const
PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number).
TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI).
E* = 2.71828182845904523536028747 ## Euler's number.
MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
## after the decimal point for Nim's
## `float64` type.
MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
## after the decimal point for Nim's
## `float32` type.
MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
## meaningful digits
## after the decimal point
## for Nim's `float` type.
MinFloatNormal* = 2.225073858507201e-308 ## Smallest normal number for Nim's
## `float` type (= 2^-1022).
RadPerDeg = PI / 180.0 ## Number of radians per degree.
type
FloatClass* = enum ## Describes the class a floating point value belongs to.
## This is the type that is returned by the
## `classify func <#classify,float>`_.
fcNormal, ## value is an ordinary nonzero floating point value
fcSubnormal, ## value is a subnormal (a very small) floating point value
fcZero, ## value is zero
fcNegZero, ## value is the negative zero
fcNan, ## value is Not a Number (NaN)
fcInf, ## value is positive infinity
fcNegInf ## value is negative infinity
func isNaN*(x: SomeFloat): bool {.inline, since: (1,5,1).} =
## Returns whether `x` is a `NaN`, more efficiently than via `classify(x) == fcNan`.
## Works even with `--passc:-ffast-math`.
runnableExamples:
doAssert NaN.isNaN
doAssert not Inf.isNaN
doAssert not isNaN(3.1415926)
template fn: untyped = result = x != x
when nimvm: fn()
else:
when defined(js) or defined(nimscript): fn()
else: result = c_isnan(x)
when defined(js):
import std/private/jsutils
proc toBitsImpl(x: float): array[2, uint32] =
let buffer = newArrayBuffer(8)
let a = newFloat64Array(buffer)
let b = newUint32Array(buffer)
a[0] = x
{.emit: "`result` = `b`;".}
# result = cast[array[2, uint32]](b)
proc jsSetSign(x: float, sgn: bool): float =
let buffer = newArrayBuffer(8)
let a = newFloat64Array(buffer)
let b = newUint32Array(buffer)
a[0] = x
{.emit: """
function updateBit(num, bitPos, bitVal) {
return (num & ~(1 << bitPos)) | (bitVal << bitPos);
}
`b`[1] = updateBit(`b`[1], 31, `sgn`);
`result` = `a`[0];
""".}
proc signbit*(x: SomeFloat): bool {.inline, since: (1, 5, 1).} =
## Returns true if `x` is negative, false otherwise.
runnableExamples:
doAssert not signbit(0.0)
doAssert signbit(-0.0)
doAssert signbit(-0.1)
doAssert not signbit(0.1)
when defined(js):
let uintBuffer = toBitsImpl(x)
result = (uintBuffer[1] shr 31) != 0
else:
result = c_signbit(x) != 0
func copySign*[T: SomeFloat](x, y: T): T {.inline, since: (1, 5, 1).} =
## Returns a value with the magnitude of `x` and the sign of `y`;
## this works even if x or y are NaN, infinity or zero, all of which can carry a sign.
runnableExamples:
doAssert copySign(10.0, 1.0) == 10.0
doAssert copySign(10.0, -1.0) == -10.0
doAssert copySign(-Inf, -0.0) == -Inf
doAssert copySign(NaN, 1.0).isNaN
doAssert copySign(1.0, copySign(NaN, -1.0)) == -1.0
# TODO: use signbit for examples
when defined(js):
let uintBuffer = toBitsImpl(y)
let sgn = (uintBuffer[1] shr 31) != 0
result = jsSetSign(x, sgn)
else:
when nimvm: # not exact but we have a vmops for recent enough nim
if y > 0.0 or (y == 0.0 and 1.0 / y > 0.0):
result = abs(x)
elif y <= 0.0:
result = -abs(x)
else: # must be NaN
result = abs(x)
else: result = c_copysign(x, y)
func classify*(x: float): FloatClass =
## Classifies a floating point value.
##
## Returns `x`'s class as specified by the `FloatClass enum<#FloatClass>`_.
runnableExamples:
doAssert classify(0.3) == fcNormal
doAssert classify(0.0) == fcZero
doAssert classify(0.3 / 0.0) == fcInf
doAssert classify(-0.3 / 0.0) == fcNegInf
doAssert classify(5.0e-324) == fcSubnormal
# JavaScript and most C compilers have no classify:
if isNan(x): return fcNan
if x == 0.0:
if 1.0 / x == Inf:
return fcZero
else:
return fcNegZero
if x * 0.5 == x:
if x > 0.0: return fcInf
else: return fcNegInf
if abs(x) < MinFloatNormal:
return fcSubnormal
return fcNormal
func almostEqual*[T: SomeFloat](x, y: T; unitsInLastPlace: Natural = 4): bool {.
since: (1, 5), inline.} =
## Checks if two float values are almost equal, using the
## [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon).
##
## `unitsInLastPlace` is the max number of
## [units in the last place](https://en.wikipedia.org/wiki/Unit_in_the_last_place)
## difference tolerated when comparing two numbers. The larger the value, the
## more error is allowed. A `0` value means that two numbers must be exactly the
## same to be considered equal.
##
## The machine epsilon has to be scaled to the magnitude of the values used
## and multiplied by the desired precision in ULPs unless the difference is
## subnormal.
##
# taken from: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon
runnableExamples:
doAssert almostEqual(PI, 3.14159265358979)
doAssert almostEqual(Inf, Inf)
doAssert not almostEqual(NaN, NaN)
if x == y:
# short circuit exact equality -- needed to catch two infinities of
# the same sign. And perhaps speeds things up a bit sometimes.
return true
let diff = abs(x - y)
result = diff <= epsilon(T) * abs(x + y) * T(unitsInLastPlace) or
diff < minimumPositiveValue(T)
func isPowerOfTwo*(x: int): bool =
## Returns `true`, if `x` is a power of two, `false` otherwise.
##
## Zero and negative numbers are not a power of two.
##
## **See also:**
## * `nextPowerOfTwo func <#nextPowerOfTwo,int>`_
runnableExamples:
doAssert isPowerOfTwo(16)
doAssert not isPowerOfTwo(5)
doAssert not isPowerOfTwo(0)
doAssert not isPowerOfTwo(-16)
return (x > 0) and ((x and (x - 1)) == 0)
func nextPowerOfTwo*(x: int): int =
## Returns `x` rounded up to the nearest power of two.
##
## Zero and negative numbers get rounded up to 1.
##
## **See also:**
## * `isPowerOfTwo func <#isPowerOfTwo,int>`_
runnableExamples:
doAssert nextPowerOfTwo(16) == 16
doAssert nextPowerOfTwo(5) == 8
doAssert nextPowerOfTwo(0) == 1
doAssert nextPowerOfTwo(-16) == 1
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
when sizeof(int) > 2:
result = result or (result shr 16)
when sizeof(int) > 1:
result = result or (result shr 8)
result = result or (result shr 4)
result = result or (result shr 2)
result = result or (result shr 1)
result += 1 + ord(x <= 0)
when not defined(js): # C
func sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
func sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".} =
## Computes the square root of `x`.
##
## **See also:**
## * `cbrt func <#cbrt,float64>`_ for the cube root
runnableExamples:
doAssert almostEqual(sqrt(4.0), 2.0)
doAssert almostEqual(sqrt(1.44), 1.2)
func cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
func cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".} =
## Computes the cube root of `x`.
##
## **See also:**
## * `sqrt func <#sqrt,float64>`_ for the square root
runnableExamples:
doAssert almostEqual(cbrt(8.0), 2.0)
doAssert almostEqual(cbrt(2.197), 1.3)
doAssert almostEqual(cbrt(-27.0), -3.0)
func ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
func ln*(x: float64): float64 {.importc: "log", header: "<math.h>".} =
## Computes the [natural logarithm](https://en.wikipedia.org/wiki/Natural_logarithm)
## of `x`.
##
## **See also:**
## * `log func <#log,T,T>`_
## * `log10 func <#log10,float64>`_
## * `log2 func <#log2,float64>`_
## * `exp func <#exp,float64>`_
runnableExamples:
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(ln(1.0), 0.0)
doAssert almostEqual(ln(0.0), -Inf)
doAssert ln(-7.0).isNaN
else: # JS
func sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
func sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
func cbrt*(x: float32): float32 {.importc: "Math.cbrt", nodecl.}
func cbrt*(x: float64): float64 {.importc: "Math.cbrt", nodecl.}
func ln*(x: float32): float32 {.importc: "Math.log", nodecl.}
func ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
func log*[T: SomeFloat](x, base: T): T =
## Computes the logarithm of `x` to base `base`.
##
## **See also:**
## * `ln func <#ln,float64>`_
## * `log10 func <#log10,float64>`_
## * `log2 func <#log2,float64>`_
runnableExamples:
doAssert almostEqual(log(9.0, 3.0), 2.0)
doAssert almostEqual(log(0.0, 2.0), -Inf)
doAssert log(-7.0, 4.0).isNaN
doAssert log(8.0, -2.0).isNaN
ln(x) / ln(base)
when not defined(js): # C
func log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
func log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".} =
## Computes the common logarithm (base 10) of `x`.
##
## **See also:**
## * `ln func <#ln,float64>`_
## * `log func <#log,T,T>`_
## * `log2 func <#log2,float64>`_
runnableExamples:
doAssert almostEqual(log10(100.0) , 2.0)
doAssert almostEqual(log10(0.0), -Inf)
doAssert log10(-100.0).isNaN
func exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
func exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".} =
## Computes the exponential function of `x` (`e^x`).
##
## **See also:**
## * `ln func <#ln,float64>`_
runnableExamples:
doAssert almostEqual(exp(1.0), E)
doAssert almostEqual(ln(exp(4.0)), 4.0)
doAssert almostEqual(exp(0.0), 1.0)
func sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
func sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".} =
## Computes the sine of `x`.
##
## **See also:**
## * `arcsin func <#arcsin,float64>`_
runnableExamples:
doAssert almostEqual(sin(PI / 6), 0.5)
doAssert almostEqual(sin(degToRad(90.0)), 1.0)
func cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
func cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".} =
## Computes the cosine of `x`.
##
## **See also:**
## * `arccos func <#arccos,float64>`_
runnableExamples:
doAssert almostEqual(cos(2 * PI), 1.0)
doAssert almostEqual(cos(degToRad(60.0)), 0.5)
func tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
func tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".} =
## Computes the tangent of `x`.
##
## **See also:**
## * `arctan func <#arctan,float64>`_
runnableExamples:
doAssert almostEqual(tan(degToRad(45.0)), 1.0)
doAssert almostEqual(tan(PI / 4), 1.0)
func sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
func sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".} =
## Computes the [hyperbolic sine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arcsinh func <#arcsinh,float64>`_
runnableExamples:
doAssert almostEqual(sinh(0.0), 0.0)
doAssert almostEqual(sinh(1.0), 1.175201193643801)
func cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
func cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".} =
## Computes the [hyperbolic cosine](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arccosh func <#arccosh,float64>`_
runnableExamples:
doAssert almostEqual(cosh(0.0), 1.0)
doAssert almostEqual(cosh(1.0), 1.543080634815244)
func tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
func tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".} =
## Computes the [hyperbolic tangent](https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions) of `x`.
##
## **See also:**
## * `arctanh func <#arctanh,float64>`_
runnableExamples:
doAssert almostEqual(tanh(0.0), 0.0)
doAssert almostEqual(tanh(1.0), 0.7615941559557649)
func arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
func arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".} =
## Computes the arc sine of `x`.
##
## **See also:**
## * `sin func <#sin,float64>`_
runnableExamples:
doAssert almostEqual(radToDeg(arcsin(0.0)), 0.0)
doAssert almostEqual(radToDeg(arcsin(1.0)), 90.0)
func arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
func arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".} =
## Computes the arc cosine of `x`.
##
## **See also:**
## * `cos func <#cos,float64>`_
runnableExamples:
doAssert almostEqual(radToDeg(arccos(0.0)), 90.0)
doAssert almostEqual(radToDeg(arccos(1.0)), 0.0)
func arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
func arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".} =
## Calculate the arc tangent of `x`.
##
## **See also:**
## * `arctan2 func <#arctan2,float64,float64>`_
## * `tan func <#tan,float64>`_
runnableExamples:
doAssert almostEqual(arctan(1.0), 0.7853981633974483)
doAssert almostEqual(radToDeg(arctan(1.0)), 45.0)
func arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
func arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".} =
## Calculate the arc tangent of `y/x`.
##
## It produces correct results even when the resulting angle is near
## `PI/2` or `-PI/2` (`x` near 0).
##
## **See also:**
## * `arctan func <#arctan,float64>`_
runnableExamples:
doAssert almostEqual(arctan2(1.0, 0.0), PI / 2.0)
doAssert almostEqual(radToDeg(arctan2(1.0, 0.0)), 90.0)
func arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
func arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
## Computes the inverse hyperbolic sine of `x`.
##
## **See also:**
## * `sinh func <#sinh,float64>`_
func arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
func arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
## Computes the inverse hyperbolic cosine of `x`.
##
## **See also:**
## * `cosh func <#cosh,float64>`_
func arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
func arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
## Computes the inverse hyperbolic tangent of `x`.
##
## **See also:**
## * `tanh func <#tanh,float64>`_
else: # JS
func log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
func log10*(x: float64): float64 {.importc: "Math.log10", nodecl.}
func log2*(x: float32): float32 {.importc: "Math.log2", nodecl.}
func log2*(x: float64): float64 {.importc: "Math.log2", nodecl.}
func exp*(x: float32): float32 {.importc: "Math.exp", nodecl.}
func exp*(x: float64): float64 {.importc: "Math.exp", nodecl.}
func sin*[T: float32|float64](x: T): T {.importc: "Math.sin", nodecl.}
func cos*[T: float32|float64](x: T): T {.importc: "Math.cos", nodecl.}
func tan*[T: float32|float64](x: T): T {.importc: "Math.tan", nodecl.}
func sinh*[T: float32|float64](x: T): T {.importc: "Math.sinh", nodecl.}
func cosh*[T: float32|float64](x: T): T {.importc: "Math.cosh", nodecl.}
func tanh*[T: float32|float64](x: T): T {.importc: "Math.tanh", nodecl.}
func arcsin*[T: float32|float64](x: T): T {.importc: "Math.asin", nodecl.}
# keep this as generic or update test in `tvmops.nim` to make sure we
# keep testing that generic importc procs work
func arccos*[T: float32|float64](x: T): T {.importc: "Math.acos", nodecl.}
func arctan*[T: float32|float64](x: T): T {.importc: "Math.atan", nodecl.}
func arctan2*[T: float32|float64](y, x: T): T {.importc: "Math.atan2", nodecl.}
func arcsinh*[T: float32|float64](x: T): T {.importc: "Math.asinh", nodecl.}
func arccosh*[T: float32|float64](x: T): T {.importc: "Math.acosh", nodecl.}
func arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
func cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
## Computes the cotangent of `x` (`1/tan(x)`).
func sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
## Computes the secant of `x` (`1/cos(x)`).
func csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
## Computes the cosecant of `x` (`1/sin(x)`).
func coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
## Computes the hyperbolic cotangent of `x` (`1/tanh(x)`).
func sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
## Computes the hyperbolic secant of `x` (`1/cosh(x)`).
func csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
## Computes the hyperbolic cosecant of `x` (`1/sinh(x)`).
func arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
## Computes the inverse cotangent of `x` (`arctan(1/x)`).
func arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
## Computes the inverse secant of `x` (`arccos(1/x)`).
func arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
## Computes the inverse cosecant of `x` (`arcsin(1/x)`).
func arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
## Computes the inverse hyperbolic cotangent of `x` (`arctanh(1/x)`).
func arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
## Computes the inverse hyperbolic secant of `x` (`arccosh(1/x)`).
func arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
## Computes the inverse hyperbolic cosecant of `x` (`arcsinh(1/x)`).
const windowsCC89 = defined(windows) and defined(bcc)
when not defined(js): # C
func hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
func hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".} =
## Computes the length of the hypotenuse of a right-angle triangle with
## `x` as its base and `y` as its height. Equivalent to `sqrt(x*x + y*y)`.
runnableExamples:
doAssert almostEqual(hypot(3.0, 4.0), 5.0)
func pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
func pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".} =
## Computes `x` raised to the power of `y`.
##
## To compute the power between integers (e.g. 2^6),
## use the `^ func <#^,T,Natural>`_.
##
## **See also:**
## * `^ func <#^,T,Natural>`_
## * `sqrt func <#sqrt,float64>`_
## * `cbrt func <#cbrt,float64>`_
runnableExamples:
doAssert almostEqual(pow(100, 1.5), 1000.0)
doAssert almostEqual(pow(16.0, 0.5), 4.0)
# TODO: add C89 version on windows
when not windowsCC89:
func erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
func erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
## Computes the [error function](https://en.wikipedia.org/wiki/Error_function) for `x`.
##
## **Note:** Not available for the JS backend.
func erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
func erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
## Computes the [complementary error function](https://en.wikipedia.org/wiki/Error_function#Complementary_error_function) for `x`.
##
## **Note:** Not available for the JS backend.
func gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
func gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".} =
## Computes the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) for `x`.
##
## **Note:** Not available for the JS backend.
##
## **See also:**
## * `lgamma func <#lgamma,float64>`_ for the natural logarithm of the gamma function
runnableExamples:
doAssert almostEqual(gamma(1.0), 1.0)
doAssert almostEqual(gamma(4.0), 6.0)
doAssert almostEqual(gamma(11.0), 3628800.0)
func lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
func lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".} =
## Computes the natural logarithm of the gamma function for `x`.
##
## **Note:** Not available for the JS backend.
##
## **See also:**
## * `gamma func <#gamma,float64>`_ for gamma function
func floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
func floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".} =
## Computes the floor function (i.e. the largest integer not greater than `x`).
##
## **See also:**
## * `ceil func <#ceil,float64>`_
## * `round func <#round,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert floor(2.1) == 2.0
doAssert floor(2.9) == 2.0
doAssert floor(-3.5) == -4.0
func ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
func ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".} =
## Computes the ceiling function (i.e. the smallest integer not smaller
## than `x`).
##
## **See also:**
## * `floor func <#floor,float64>`_
## * `round func <#round,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert ceil(2.1) == 3.0
doAssert ceil(2.9) == 3.0
doAssert ceil(-2.1) == -2.0
when windowsCC89:
# MSVC 2010 don't have trunc/truncf
# this implementation was inspired by Go-lang Math.Trunc
func truncImpl(f: float64): float64 =
const
mask: uint64 = 0x7FF
shift: uint64 = 64 - 12
bias: uint64 = 0x3FF
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint64](f)
let e = (x shr shift) and mask - bias
# Keep the top 12+e bits, the integer part; clear the rest.
if e < 64 - 12:
x = x and (not (1'u64 shl (64'u64 - 12'u64 - e) - 1'u64))
result = cast[float64](x)
func truncImpl(f: float32): float32 =
const
mask: uint32 = 0xFF
shift: uint32 = 32 - 9
bias: uint32 = 0x7F
if f < 1:
if f < 0: return -truncImpl(-f)
elif f == 0: return f # Return -0 when f == -0
else: return 0
var x = cast[uint32](f)
let e = (x shr shift) and mask - bias
# Keep the top 9+e bits, the integer part; clear the rest.
if e < 32 - 9:
x = x and (not (1'u32 shl (32'u32 - 9'u32 - e) - 1'u32))
result = cast[float32](x)
func trunc*(x: float64): float64 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
func trunc*(x: float32): float32 =
if classify(x) in {fcZero, fcNegZero, fcNan, fcInf, fcNegInf}: return x
result = truncImpl(x)
func round*[T: float32|float64](x: T): T =
## Windows compilers prior to MSVC 2012 do not implement 'round',
## 'roundl' or 'roundf'.
result = if x < 0.0: ceil(x - T(0.5)) else: floor(x + T(0.5))
else:
func round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
func round*(x: float64): float64 {.importc: "round", header: "<math.h>".} =
## Rounds a float to zero decimal places.
##
## Used internally by the `round func <#round,T,int>`_
## when the specified number of places is 0.
##
## **See also:**
## * `round func <#round,T,int>`_ for rounding to the specific
## number of decimal places
## * `floor func <#floor,float64>`_
## * `ceil func <#ceil,float64>`_
## * `trunc func <#trunc,float64>`_
runnableExamples:
doAssert round(3.4) == 3.0
doAssert round(3.5) == 4.0
doAssert round(4.5) == 5.0
func trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
func trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".} =
## Truncates `x` to the decimal point.
##
## **See also:**
## * `floor func <#floor,float64>`_
## * `ceil func <#ceil,float64>`_
## * `round func <#round,float64>`_
runnableExamples:
doAssert trunc(PI) == 3.0
doAssert trunc(-1.85) == -1.0
func `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
func `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".} =
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
##
## **See also:**
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
runnableExamples:
doAssert 6.5 mod 2.5 == 1.5
doAssert -6.5 mod 2.5 == -1.5
doAssert 6.5 mod -2.5 == 1.5
doAssert -6.5 mod -2.5 == -1.5
else: # JS
func hypot*(x, y: float32): float32 {.importc: "Math.hypot", varargs, nodecl.}
func hypot*(x, y: float64): float64 {.importc: "Math.hypot", varargs, nodecl.}
func pow*(x, y: float32): float32 {.importc: "Math.pow", nodecl.}
func pow*(x, y: float64): float64 {.importc: "Math.pow", nodecl.}
func floor*(x: float32): float32 {.importc: "Math.floor", nodecl.}
func floor*(x: float64): float64 {.importc: "Math.floor", nodecl.}
func ceil*(x: float32): float32 {.importc: "Math.ceil", nodecl.}
func ceil*(x: float64): float64 {.importc: "Math.ceil", nodecl.}
when (NimMajor, NimMinor) < (1, 5) or defined(nimLegacyJsRound):
func round*(x: float): float {.importc: "Math.round", nodecl.}
else:
func jsRound(x: float): float {.importc: "Math.round", nodecl.}
func round*[T: float64 | float32](x: T): T =
if x >= 0: result = jsRound(x)
else:
result = ceil(x)
if result - x >= T(0.5):
result -= T(1.0)
func trunc*(x: float32): float32 {.importc: "Math.trunc", nodecl.}
func trunc*(x: float64): float64 {.importc: "Math.trunc", nodecl.}
func `mod`*(x, y: float32): float32 {.importjs: "(# % #)".}
func `mod`*(x, y: float64): float64 {.importjs: "(# % #)".} =
## Computes the modulo operation for float values (the remainder of `x` divided by `y`).
runnableExamples:
doAssert 6.5 mod 2.5 == 1.5
doAssert -6.5 mod 2.5 == -1.5
doAssert 6.5 mod -2.5 == 1.5
doAssert -6.5 mod -2.5 == -1.5
func divmod*[T:SomeInteger](num, denom: T): (T, T) =
runnableExamples:
doAssert divmod(5, 2) == (2, 1)
doAssert divmod(5, -3) == (-1, 2)
result[0] = num div denom
result[1] = num mod denom
func round*[T: float32|float64](x: T, places: int): T =
## Decimal rounding on a binary floating point number.
##
## This function is NOT reliable. Floating point numbers cannot hold
## non integer decimals precisely. If `places` is 0 (or omitted),
## round to the nearest integral value following normal mathematical
## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is
## greater than 0, round to the given number of decimal places,
## e.g. `round(54.346, 2) -> 54.350000000000001421…`. If `places` is negative, round
## to the left of the decimal place, e.g. `round(537.345, -1) -> 540.0`.
runnableExamples:
doAssert round(PI, 2) == 3.14
doAssert round(PI, 4) == 3.1416
if places == 0:
result = round(x)
else:
var mult = pow(10.0, T(places))
result = round(x * mult) / mult
func floorDiv*[T: SomeInteger](x, y: T): T =
## Floor division is conceptually defined as `floor(x / y)`.
##
## This is different from the `system.div <system.html#div,int,int>`_
## operator, which is defined as `trunc(x / y)`.
## That is, `div` rounds towards `0` and `floorDiv` rounds down.
##
## **See also:**
## * `system.div proc <system.html#div,int,int>`_ for integer division
## * `floorMod func <#floorMod,T,T>`_ for Python-like (`%` operator) behavior
runnableExamples:
doAssert floorDiv( 13, 3) == 4
doAssert floorDiv(-13, 3) == -5
doAssert floorDiv( 13, -3) == -5
doAssert floorDiv(-13, -3) == 4
result = x div y
let r = x mod y
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
func floorMod*[T: SomeNumber](x, y: T): T =
## Floor modulo is conceptually defined as `x - (floorDiv(x, y) * y)`.
##
## This func behaves the same as the `%` operator in Python.
##
## **See also:**
## * `mod func <#mod,float64,float64>`_
## * `floorDiv func <#floorDiv,T,T>`_
runnableExamples:
doAssert floorMod( 13, 3) == 1
doAssert floorMod(-13, 3) == 2
doAssert floorMod( 13, -3) == -2
doAssert floorMod(-13, -3) == -1
result = x mod y
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
func euclDiv*[T: SomeInteger](x, y: T): T {.since: (1, 5, 1).} =
## Returns euclidean division of `x` by `y`.
runnableExamples:
doAssert euclDiv(13, 3) == 4
doAssert euclDiv(-13, 3) == -5
doAssert euclDiv(13, -3) == -4
doAssert euclDiv(-13, -3) == 5
result = x div y
if x mod y < 0:
if y > 0:
dec result
else:
inc result
func euclMod*[T: SomeNumber](x, y: T): T {.since: (1, 5, 1).} =
## Returns euclidean modulo of `x` by `y`.
## `euclMod(x, y)` is non-negative.
runnableExamples:
doAssert euclMod(13, 3) == 1
doAssert euclMod(-13, 3) == 2
doAssert euclMod(13, -3) == 1
doAssert euclMod(-13, -3) == 2
result = x mod y
if result < 0:
result += abs(y)
func ceilDiv*[T: SomeInteger](x, y: T): T {.inline, since: (1, 5, 1).} =
## Ceil division is conceptually defined as `ceil(x / y)`.
##
## Assumes `x >= 0` and `y > 0` (and `x + y - 1 <= high(T)` if T is SomeUnsignedInt).
##
## This is different from the `system.div <system.html#div,int,int>`_
## operator, which works like `trunc(x / y)`.
## That is, `div` rounds towards `0` and `ceilDiv` rounds up.
##
## This function has the above input limitation, because that allows the
## compiler to generate faster code and it is rarely used with
## negative values or unsigned integers close to `high(T)/2`.
## If you need a `ceilDiv` that works with any input, see:
## https://github.com/demotomohiro/divmath.
##
## **See also:**
## * `system.div proc <system.html#div,int,int>`_ for integer division
## * `floorDiv func <#floorDiv,T,T>`_ for integer division which rounds down.
runnableExamples:
assert ceilDiv(12, 3) == 4
assert ceilDiv(13, 3) == 5
when sizeof(T) == 8:
type UT = uint64
elif sizeof(T) == 4:
type UT = uint32
elif sizeof(T) == 2:
type UT = uint16
elif sizeof(T) == 1:
type UT = uint8
else:
{.fatal: "Unsupported int type".}
assert x >= 0 and y > 0
when T is SomeUnsignedInt:
assert x + y - 1 >= x
# If the divisor is const, the backend C/C++ compiler generates code without a `div`
# instruction, as it is slow on most CPUs.
# If the divisor is a power of 2 and a const unsigned integer type, the
# compiler generates faster code.
# If the divisor is const and a signed integer, generated code becomes slower
# than the code with unsigned integers, because division with signed integers
# need to works for both positive and negative value without `idiv`/`sdiv`.
# That is why this code convert parameters to unsigned.
# This post contains a comparison of the performance of signed/unsigned integers:
# https://github.com/nim-lang/Nim/pull/18596#issuecomment-894420984.
# If signed integer arguments were not converted to unsigned integers,
# `ceilDiv` wouldn't work for any positive signed integer value, because
# `x + (y - 1)` can overflow.
((x.UT + (y.UT - 1.UT)) div y.UT).T
func frexp*[T: float32|float64](x: T): tuple[frac: T, exp: int] {.inline.} =
## Splits `x` into a normalized fraction `frac` and an integral power of 2 `exp`,
## such that `abs(frac) in 0.5..<1` and `x == frac * 2 ^ exp`, except for special
## cases shown below.
runnableExamples:
doAssert frexp(8.0) == (0.5, 4)
doAssert frexp(-8.0) == (-0.5, 4)
doAssert frexp(0.0) == (0.0, 0)
# special cases:
when sizeof(int) == 8:
doAssert frexp(-0.0).frac.signbit # signbit preserved for +-0
doAssert frexp(Inf).frac == Inf # +- Inf preserved
doAssert frexp(NaN).frac.isNaN
when not defined(js):
var exp: cint
result.frac = c_frexp2(x, exp)
result.exp = exp
else:
if x == 0.0:
# reuse signbit implementation
let uintBuffer = toBitsImpl(x)
if (uintBuffer[1] shr 31) != 0:
# x is -0.0
result = (-0.0, 0)
else:
result = (0.0, 0)
elif x < 0.0:
result = frexp(-x)
result.frac = -result.frac
else:
var ex = trunc(log2(x))
result.exp = int(ex)
result.frac = x / pow(2.0, ex)
if abs(result.frac) >= 1:
inc(result.exp)
result.frac = result.frac / 2
if result.exp == 1024 and result.frac == 0.0:
result.frac = 0.99999999999999988898
func frexp*[T: float32|float64](x: T, exponent: var int): T {.inline.} =
## Overload of `frexp` that calls `(result, exponent) = frexp(x)`.
runnableExamples:
var x: int
doAssert frexp(5.0, x) == 0.625
doAssert x == 3
(result, exponent) = frexp(x)
when not defined(js):
when windowsCC89:
# taken from Go-lang Math.Log2
const ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
template log2Impl[T](x: T): T =
var exp: int
var frac = frexp(x, exp)
# Make sure exact powers of two give an exact answer.
# Don't depend on Log(0.5)*(1/Ln2)+exp being exactly exp-1.
if frac == 0.5: return T(exp - 1)
log10(frac) * (1 / ln2) + T(exp)
func log2*(x: float32): float32 = log2Impl(x)
func log2*(x: float64): float64 = log2Impl(x)
## Log2 returns the binary logarithm of x.
## The special cases are the same as for Log.
else:
func log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
func log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".} =
## Computes the binary logarithm (base 2) of `x`.
##
## **See also:**
## * `log func <#log,T,T>`_
## * `log10 func <#log10,float64>`_
## * `ln func <#ln,float64>`_
runnableExamples:
doAssert almostEqual(log2(8.0), 3.0)
doAssert almostEqual(log2(1.0), 0.0)
doAssert almostEqual(log2(0.0), -Inf)
doAssert log2(-2.0).isNaN
func splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
## Breaks `x` into an integer and a fractional part.
##
## Returns a tuple containing `intpart` and `floatpart`, representing
## the integer part and the fractional part, respectively.
##
## Both parts have the same sign as `x`. Analogous to the `modf`
## function in C.
runnableExamples:
doAssert splitDecimal(5.25) == (intpart: 5.0, floatpart: 0.25)
doAssert splitDecimal(-2.73) == (intpart: -2.0, floatpart: -0.73)
var
absolute: T
absolute = abs(x)
result.intpart = floor(absolute)
result.floatpart = absolute - result.intpart
if x < 0:
result.intpart = -result.intpart
result.floatpart = -result.floatpart
func degToRad*[T: float32|float64](d: T): T {.inline.} =
## Converts from degrees to radians.
##
## **See also:**
## * `radToDeg func <#radToDeg,T>`_
runnableExamples:
doAssert almostEqual(degToRad(180.0), PI)
result = d * T(RadPerDeg)
func radToDeg*[T: float32|float64](d: T): T {.inline.} =
## Converts from radians to degrees.
##
## **See also:**
## * `degToRad func <#degToRad,T>`_
runnableExamples:
doAssert almostEqual(radToDeg(2 * PI), 360.0)
result = d / T(RadPerDeg)
func sgn*[T: SomeNumber](x: T): int {.inline.} =
## Sign function.
##
## Returns:
## * `-1` for negative numbers and `NegInf`,
## * `1` for positive numbers and `Inf`,
## * `0` for positive zero, negative zero and `NaN`
runnableExamples:
doAssert sgn(5) == 1
doAssert sgn(0) == 0
doAssert sgn(-4.1) == -1
ord(T(0) < x) - ord(x < T(0))
{.pop.}
{.pop.}
func sum*[T](x: openArray[T]): T =
## Computes the sum of the elements in `x`.
##
## If `x` is empty, 0 is returned.
##
## **See also:**
## * `prod func <#prod,openArray[T]>`_
## * `cumsum func <#cumsum,openArray[T]>`_
## * `cumsummed func <#cumsummed,openArray[T]>`_
runnableExamples:
doAssert sum([1, 2, 3, 4]) == 10
doAssert sum([-4, 3, 5]) == 4
for i in items(x): result = result + i
func prod*[T](x: openArray[T]): T =
## Computes the product of the elements in `x`.
##
## If `x` is empty, 1 is returned.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `fac func <#fac,int>`_
runnableExamples:
doAssert prod([1, 2, 3, 4]) == 24
doAssert prod([-4, 3, 5]) == -60
result = T(1)
for i in items(x): result = result * i
func cumsummed*[T](x: openArray[T]): seq[T] =
## Returns the cumulative (aka prefix) summation of `x`.
##
## If `x` is empty, `@[]` is returned.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `cumsum func <#cumsum,openArray[T]>`_ for the in-place version
runnableExamples:
doAssert cumsummed([1, 2, 3, 4]) == @[1, 3, 6, 10]
let xLen = x.len
if xLen == 0:
return @[]
result.setLen(xLen)
result[0] = x[0]
for i in 1 ..< xLen: result[i] = result[i - 1] + x[i]
func cumsum*[T](x: var openArray[T]) =
## Transforms `x` in-place (must be declared as `var`) into its
## cumulative (aka prefix) summation.
##
## **See also:**
## * `sum func <#sum,openArray[T]>`_
## * `cumsummed func <#cumsummed,openArray[T]>`_ for a version which
## returns a cumsummed sequence
runnableExamples:
var a = [1, 2, 3, 4]
cumsum(a)
doAssert a == @[1, 3, 6, 10]
for i in 1 ..< x.len: x[i] = x[i - 1] + x[i]
func `^`*[T: SomeNumber](x: T, y: Natural): T =
## Computes `x` to the power of `y`.
##
## The exponent `y` must be non-negative, use
## `pow <#pow,float64,float64>`_ for negative exponents.
##
## **See also:**
## * `pow func <#pow,float64,float64>`_ for negative exponent or
## floats
## * `sqrt func <#sqrt,float64>`_
## * `cbrt func <#cbrt,float64>`_
runnableExamples:
doAssert -3 ^ 0 == 1
doAssert -3 ^ 1 == -3
doAssert -3 ^ 2 == 9
case y
of 0: result = 1
of 1: result = x
of 2: result = x * x
of 3: result = x * x * x
else:
var (x, y) = (x, y)
result = 1
while true:
if (y and 1) != 0:
result *= x
y = y shr 1
if y == 0:
break
x *= x
func gcd*[T](x, y: T): T =
## Computes the greatest common (positive) divisor of `x` and `y`.
##
## Note that for floats, the result cannot always be interpreted as
## "greatest decimal `z` such that `z*N == x and z*M == y`
## where N and M are positive integers".
##
## **See also:**
## * `gcd func <#gcd,SomeInteger,SomeInteger>`_ for an integer version
## * `lcm func <#lcm,T,T>`_
runnableExamples:
doAssert gcd(13.5, 9.0) == 4.5
var (x, y) = (x, y)
while y != 0:
x = x mod y
swap x, y
abs x
when useBuiltins:
## this func uses bitwise comparisons from C compilers, which are not always available.
func gcd*(x, y: SomeInteger): SomeInteger =
## Computes the greatest common (positive) divisor of `x` and `y`,
## using the binary GCD (aka Stein's) algorithm.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_ for a float version
## * `lcm func <#lcm,T,T>`_
runnableExamples:
doAssert gcd(12, 8) == 4
doAssert gcd(17, 63) == 1
when x is SomeSignedInt:
var x = abs(x)
else:
var x = x
when y is SomeSignedInt:
var y = abs(y)
else:
var y = y
if x == 0:
return y
if y == 0:
return x
let shift = countTrailingZeroBits(x or y)
y = y shr countTrailingZeroBits(y)
while x != 0:
x = x shr countTrailingZeroBits(x)
if y > x:
swap y, x
x -= y
y shl shift
func gcd*[T](x: openArray[T]): T {.since: (1, 1).} =
## Computes the greatest common (positive) divisor of the elements of `x`.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_ for a version with two arguments
runnableExamples:
doAssert gcd(@[13.5, 9.0]) == 4.5
result = x[0]
for i in 1 ..< x.len:
result = gcd(result, x[i])
func lcm*[T](x, y: T): T =
## Computes the least common multiple of `x` and `y`.
##
## **See also:**
## * `gcd func <#gcd,T,T>`_
runnableExamples:
doAssert lcm(24, 30) == 120
doAssert lcm(13, 39) == 39
x div gcd(x, y) * y
func clamp*[T](val: T, bounds: Slice[T]): T {.since: (1, 5), inline.} =
## Like `system.clamp`, but takes a slice, so you can easily clamp within a range.
runnableExamples:
assert clamp(10, 1 .. 5) == 5
assert clamp(1, 1 .. 3) == 1
type A = enum a0, a1, a2, a3, a4, a5
assert a1.clamp(a2..a4) == a2
assert clamp((3, 0), (1, 0) .. (2, 9)) == (2, 9)
doAssertRaises(AssertionDefect): discard clamp(1, 3..2) # invalid bounds
assert bounds.a <= bounds.b, $(bounds.a, bounds.b)
clamp(val, bounds.a, bounds.b)
func lcm*[T](x: openArray[T]): T {.since: (1, 1).} =
## Computes the least common multiple of the elements of `x`.
##
## **See also:**
## * `lcm func <#lcm,T,T>`_ for a version with two arguments
runnableExamples:
doAssert lcm(@[24, 30]) == 120
result = x[0]
for i in 1 ..< x.len:
result = lcm(result, x[i])
|