1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Dennis Felsing
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module implements rational numbers, consisting of a numerator and
## a denominator. The denominator can not be 0.
runnableExamples:
let
r1 = 1 // 2
r2 = -3 // 4
doAssert r1 + r2 == -1 // 4
doAssert r1 - r2 == 5 // 4
doAssert r1 * r2 == -3 // 8
doAssert r1 / r2 == -2 // 3
import std/[math, hashes]
when defined(nimPreviewSlimSystem):
import std/assertions
type Rational*[T] = object
## A rational number, consisting of a numerator `num` and a denominator `den`.
num*, den*: T
func reduce*[T: SomeInteger](x: var Rational[T]) =
## Reduces the rational number `x`, so that the numerator and denominator
## have no common divisors other than 1 (and -1).
## If `x` is 0, raises `DivByZeroDefect`.
##
## **Note:** This is called automatically by the various operations on rationals.
runnableExamples:
var r = Rational[int](num: 2, den: 4) # 1/2
reduce(r)
doAssert r.num == 1
doAssert r.den == 2
if x.den == 0:
raise newException(DivByZeroDefect, "division by zero")
let common = gcd(x.num, x.den)
if x.den > 0:
x.num = x.num div common
x.den = x.den div common
when T isnot SomeUnsignedInt:
if x.den < 0:
x.num = -x.num div common
x.den = -x.den div common
func initRational*[T: SomeInteger](num, den: T): Rational[T] =
## Creates a new rational number with numerator `num` and denominator `den`.
## `den` must not be 0.
##
## **Note:** `den != 0` is not checked when assertions are turned off.
assert(den != 0, "a denominator of zero is invalid")
result.num = num
result.den = den
reduce(result)
func `//`*[T](num, den: T): Rational[T] =
## A friendlier version of `initRational <#initRational,T,T>`_.
runnableExamples:
let x = 1 // 3 + 1 // 5
doAssert x == 8 // 15
initRational[T](num, den)
func `$`*[T](x: Rational[T]): string =
## Turns a rational number into a string.
runnableExamples:
doAssert $(1 // 2) == "1/2"
result = $x.num & "/" & $x.den
func toRational*[T: SomeInteger](x: T): Rational[T] =
## Converts some integer `x` to a rational number.
runnableExamples:
doAssert toRational(42) == 42 // 1
result.num = x
result.den = 1
func toRational*(x: float,
n: int = high(int) shr (sizeof(int) div 2 * 8)): Rational[int] =
## Calculates the best rational approximation of `x`,
## where the denominator is smaller than `n`
## (default is the largest possible `int` for maximal resolution).
##
## The algorithm is based on the theory of continued fractions.
# David Eppstein / UC Irvine / 8 Aug 1993
# With corrections from Arno Formella, May 2008
runnableExamples:
let x = 1.2
doAssert x.toRational.toFloat == x
var
m11, m22 = 1
m12, m21 = 0
ai = int(x)
x = x
while m21 * ai + m22 <= n:
swap m12, m11
swap m22, m21
m11 = m12 * ai + m11
m21 = m22 * ai + m21
if x == float(ai): break # division by zero
x = 1 / (x - float(ai))
if x > float(high(int32)): break # representation failure
ai = int(x)
result = m11 // m21
func toFloat*[T](x: Rational[T]): float =
## Converts a rational number `x` to a `float`.
x.num / x.den
func toInt*[T](x: Rational[T]): int =
## Converts a rational number `x` to an `int`. Conversion rounds towards 0 if
## `x` does not contain an integer value.
x.num div x.den
func `+`*[T](x, y: Rational[T]): Rational[T] =
## Adds two rational numbers.
let common = lcm(x.den, y.den)
result.num = common div x.den * x.num + common div y.den * y.num
result.den = common
reduce(result)
func `+`*[T](x: Rational[T], y: T): Rational[T] =
## Adds the rational `x` to the int `y`.
result.num = x.num + y * x.den
result.den = x.den
func `+`*[T](x: T, y: Rational[T]): Rational[T] =
## Adds the int `x` to the rational `y`.
result.num = x * y.den + y.num
result.den = y.den
func `+=`*[T](x: var Rational[T], y: Rational[T]) =
## Adds the rational `y` to the rational `x` in-place.
let common = lcm(x.den, y.den)
x.num = common div x.den * x.num + common div y.den * y.num
x.den = common
reduce(x)
func `+=`*[T](x: var Rational[T], y: T) =
## Adds the int `y` to the rational `x` in-place.
x.num += y * x.den
func `-`*[T](x: Rational[T]): Rational[T] =
## Unary minus for rational numbers.
result.num = -x.num
result.den = x.den
func `-`*[T](x, y: Rational[T]): Rational[T] =
## Subtracts two rational numbers.
let common = lcm(x.den, y.den)
result.num = common div x.den * x.num - common div y.den * y.num
result.den = common
reduce(result)
func `-`*[T](x: Rational[T], y: T): Rational[T] =
## Subtracts the int `y` from the rational `x`.
result.num = x.num - y * x.den
result.den = x.den
func `-`*[T](x: T, y: Rational[T]): Rational[T] =
## Subtracts the rational `y` from the int `x`.
result.num = x * y.den - y.num
result.den = y.den
func `-=`*[T](x: var Rational[T], y: Rational[T]) =
## Subtracts the rational `y` from the rational `x` in-place.
let common = lcm(x.den, y.den)
x.num = common div x.den * x.num - common div y.den * y.num
x.den = common
reduce(x)
func `-=`*[T](x: var Rational[T], y: T) =
## Subtracts the int `y` from the rational `x` in-place.
x.num -= y * x.den
func `*`*[T](x, y: Rational[T]): Rational[T] =
## Multiplies two rational numbers.
result.num = x.num * y.num
result.den = x.den * y.den
reduce(result)
func `*`*[T](x: Rational[T], y: T): Rational[T] =
## Multiplies the rational `x` with the int `y`.
result.num = x.num * y
result.den = x.den
reduce(result)
func `*`*[T](x: T, y: Rational[T]): Rational[T] =
## Multiplies the int `x` with the rational `y`.
result.num = x * y.num
result.den = y.den
reduce(result)
func `*=`*[T](x: var Rational[T], y: Rational[T]) =
## Multiplies the rational `x` by `y` in-place.
x.num *= y.num
x.den *= y.den
reduce(x)
func `*=`*[T](x: var Rational[T], y: T) =
## Multiplies the rational `x` by the int `y` in-place.
x.num *= y
reduce(x)
func reciprocal*[T](x: Rational[T]): Rational[T] =
## Calculates the reciprocal of `x` (`1/x`).
## If `x` is 0, raises `DivByZeroDefect`.
if x.num > 0:
result.num = x.den
result.den = x.num
elif x.num < 0:
result.num = -x.den
result.den = -x.num
else:
raise newException(DivByZeroDefect, "division by zero")
func `/`*[T](x, y: Rational[T]): Rational[T] =
## Divides the rational `x` by the rational `y`.
result.num = x.num * y.den
result.den = x.den * y.num
reduce(result)
func `/`*[T](x: Rational[T], y: T): Rational[T] =
## Divides the rational `x` by the int `y`.
result.num = x.num
result.den = x.den * y
reduce(result)
func `/`*[T](x: T, y: Rational[T]): Rational[T] =
## Divides the int `x` by the rational `y`.
result.num = x * y.den
result.den = y.num
reduce(result)
func `/=`*[T](x: var Rational[T], y: Rational[T]) =
## Divides the rational `x` by the rational `y` in-place.
x.num *= y.den
x.den *= y.num
reduce(x)
func `/=`*[T](x: var Rational[T], y: T) =
## Divides the rational `x` by the int `y` in-place.
x.den *= y
reduce(x)
func cmp*(x, y: Rational): int =
## Compares two rationals. Returns
## * a value less than zero, if `x < y`
## * a value greater than zero, if `x > y`
## * zero, if `x == y`
(x - y).num
func `<`*(x, y: Rational): bool =
## Returns true if `x` is less than `y`.
(x - y).num < 0
func `<=`*(x, y: Rational): bool =
## Returns tue if `x` is less than or equal to `y`.
(x - y).num <= 0
func `==`*(x, y: Rational): bool =
## Compares two rationals for equality.
(x - y).num == 0
func abs*[T](x: Rational[T]): Rational[T] =
## Returns the absolute value of `x`.
runnableExamples:
doAssert abs(1 // 2) == 1 // 2
doAssert abs(-1 // 2) == 1 // 2
result.num = abs x.num
result.den = abs x.den
func `div`*[T: SomeInteger](x, y: Rational[T]): T =
## Computes the rational truncated division.
(x.num * y.den) div (y.num * x.den)
func `mod`*[T: SomeInteger](x, y: Rational[T]): Rational[T] =
## Computes the rational modulo by truncated division (remainder).
## This is same as `x - (x div y) * y`.
result = ((x.num * y.den) mod (y.num * x.den)) // (x.den * y.den)
reduce(result)
func floorDiv*[T: SomeInteger](x, y: Rational[T]): T =
## Computes the rational floor division.
##
## Floor division is conceptually defined as `floor(x / y)`.
## This is different from the `div` operator, which is defined
## as `trunc(x / y)`. That is, `div` rounds towards 0 and `floorDiv`
## rounds down.
floorDiv(x.num * y.den, y.num * x.den)
func floorMod*[T: SomeInteger](x, y: Rational[T]): Rational[T] =
## Computes the rational modulo by floor division (modulo).
##
## This is same as `x - floorDiv(x, y) * y`.
## This func behaves the same as the `%` operator in Python.
result = floorMod(x.num * y.den, y.num * x.den) // (x.den * y.den)
reduce(result)
func hash*[T](x: Rational[T]): Hash =
## Computes the hash for the rational `x`.
# reduce first so that hash(x) == hash(y) for x == y
var copy = x
reduce(copy)
var h: Hash = 0
h = h !& hash(copy.num)
h = h !& hash(copy.den)
result = !$h
func `^`*[T: SomeInteger](x: Rational[T], y: T): Rational[T] =
## Computes `x` to the power of `y`.
##
## The exponent `y` must be an integer. Negative exponents are supported
## but floating point exponents are not.
runnableExamples:
doAssert (-3 // 5) ^ 0 == (1 // 1)
doAssert (-3 // 5) ^ 1 == (-3 // 5)
doAssert (-3 // 5) ^ 2 == (9 // 25)
doAssert (-3 // 5) ^ -2 == (25 // 9)
if y >= 0:
result.num = x.num ^ y
result.den = x.den ^ y
else:
result.num = x.den ^ -y
result.den = x.num ^ -y
# Note that all powers of reduced rationals are already reduced,
# so we don't need to call reduce() here
|