1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Nim Contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## :Authors: Zahary Karadjov
##
## This module provides utilities for reserving portions of the
## address space of a program without consuming physical memory.
## It can be used to implement a dynamically resizable buffer that
## is guaranteed to remain in the same memory location. The buffer
## will be able to grow up to the size of the initially reserved
## portion of the address space.
##
## Unstable API.
from std/oserrors import raiseOSError, osLastError
when defined(nimPreviewSlimSystem):
import std/assertions
template distance*(lhs, rhs: pointer): int =
cast[int](rhs) - cast[int](lhs)
template shift*(p: pointer, distance: int): pointer =
cast[pointer](cast[int](p) + distance)
type
MemAccessFlags* = int
ReservedMem* = object
memStart: pointer
usedMemEnd: pointer
committedMemEnd: pointer
memEnd: pointer
maxCommittedAndUnusedPages: int
accessFlags: MemAccessFlags
ReservedMemSeq*[T] = object
mem: ReservedMem
when defined(windows):
import std/winlean
import std/private/win_getsysteminfo
proc getAllocationGranularity: uint =
var sysInfo: SystemInfo
getSystemInfo(addr sysInfo)
return uint(sysInfo.dwAllocationGranularity)
let allocationGranularity = getAllocationGranularity().int
const
memNoAccess = MemAccessFlags(PAGE_NOACCESS)
memExec* = MemAccessFlags(PAGE_EXECUTE)
memExecRead* = MemAccessFlags(PAGE_EXECUTE_READ)
memExecReadWrite* = MemAccessFlags(PAGE_EXECUTE_READWRITE)
memRead* = MemAccessFlags(PAGE_READONLY)
memReadWrite* = MemAccessFlags(PAGE_READWRITE)
template check(expr) =
let r = expr
if r == cast[typeof(r)](0):
raiseOSError(osLastError())
else:
import std/posix
let allocationGranularity = sysconf(SC_PAGESIZE)
let
memNoAccess = MemAccessFlags(PROT_NONE)
memExec* = MemAccessFlags(PROT_EXEC)
memExecRead* = MemAccessFlags(PROT_EXEC or PROT_READ)
memExecReadWrite* = MemAccessFlags(PROT_EXEC or PROT_READ or PROT_WRITE)
memRead* = MemAccessFlags(PROT_READ)
memReadWrite* = MemAccessFlags(PROT_READ or PROT_WRITE)
template check(expr) =
if not expr:
raiseOSError(osLastError())
func nextAlignedOffset(n, alignment: int): int =
result = n
let m = n mod alignment
if m != 0: result += alignment - m
when defined(windows):
const
MEM_DECOMMIT = 0x4000
MEM_RESERVE = 0x2000
MEM_COMMIT = 0x1000
proc virtualFree(lpAddress: pointer, dwSize: int,
dwFreeType: int32): cint {.header: "<windows.h>", stdcall,
importc: "VirtualFree".}
proc virtualAlloc(lpAddress: pointer, dwSize: int, flAllocationType,
flProtect: int32): pointer {.
header: "<windows.h>", stdcall, importc: "VirtualAlloc".}
proc init*(T: type ReservedMem,
maxLen: Natural,
initLen: Natural = 0,
initCommitLen = initLen,
memStart = pointer(nil),
accessFlags = memReadWrite,
maxCommittedAndUnusedPages = 3): ReservedMem =
assert initLen <= initCommitLen
let commitSize = nextAlignedOffset(initCommitLen, allocationGranularity)
when defined(windows):
result.memStart = virtualAlloc(memStart, maxLen, MEM_RESERVE,
accessFlags.cint)
check result.memStart
if commitSize > 0:
check virtualAlloc(result.memStart, commitSize, MEM_COMMIT,
accessFlags.cint)
else:
var allocFlags = MAP_PRIVATE or MAP_ANONYMOUS # or MAP_NORESERVE
# if memStart != nil:
# allocFlags = allocFlags or MAP_FIXED_NOREPLACE
result.memStart = mmap(memStart, maxLen, PROT_NONE, allocFlags, -1, 0)
check result.memStart != MAP_FAILED
if commitSize > 0:
check mprotect(result.memStart, commitSize, cint(accessFlags)) == 0
result.usedMemEnd = result.memStart.shift(initLen)
result.committedMemEnd = result.memStart.shift(commitSize)
result.memEnd = result.memStart.shift(maxLen)
result.accessFlags = accessFlags
result.maxCommittedAndUnusedPages = maxCommittedAndUnusedPages
func len*(m: ReservedMem): int =
distance(m.memStart, m.usedMemEnd)
func commitedLen*(m: ReservedMem): int =
distance(m.memStart, m.committedMemEnd)
func maxLen*(m: ReservedMem): int =
distance(m.memStart, m.memEnd)
proc setLen*(m: var ReservedMem, newLen: int) =
let len = m.len
m.usedMemEnd = m.memStart.shift(newLen)
if newLen > len:
let d = distance(m.committedMemEnd, m.usedMemEnd)
if d > 0:
let commitExtensionSize = nextAlignedOffset(d, allocationGranularity)
when defined(windows):
check virtualAlloc(m.committedMemEnd, commitExtensionSize,
MEM_COMMIT, m.accessFlags.cint)
else:
check mprotect(m.committedMemEnd, commitExtensionSize,
m.accessFlags.cint) == 0
else:
let d = distance(m.usedMemEnd, m.committedMemEnd) -
m.maxCommittedAndUnusedPages * allocationGranularity
if d > 0:
let commitSizeShrinkage = nextAlignedOffset(d, allocationGranularity)
let newCommitEnd = m.committedMemEnd.shift(-commitSizeShrinkage)
when defined(windows):
check virtualFree(newCommitEnd, commitSizeShrinkage, MEM_DECOMMIT)
else:
check posix_madvise(newCommitEnd, commitSizeShrinkage,
POSIX_MADV_DONTNEED) == 0
m.committedMemEnd = newCommitEnd
proc init*(SeqType: type ReservedMemSeq,
maxLen: Natural,
initLen: Natural = 0,
initCommitLen: Natural = 0,
memStart = pointer(nil),
accessFlags = memReadWrite,
maxCommittedAndUnusedPages = 3): SeqType =
let elemSize = sizeof(SeqType.T)
result.mem = ReservedMem.init(maxLen * elemSize,
initLen * elemSize,
initCommitLen * elemSize,
memStart, accessFlags,
maxCommittedAndUnusedPages)
func `[]`*[T](s: ReservedMemSeq[T], pos: Natural): lent T =
let elemAddr = s.mem.memStart.shift(pos * sizeof(T))
rangeCheck elemAddr < s.mem.usedMemEnd
result = (cast[ptr T](elemAddr))[]
func `[]`*[T](s: var ReservedMemSeq[T], pos: Natural): var T =
let elemAddr = s.mem.memStart.shift(pos * sizeof(T))
rangeCheck elemAddr < s.mem.usedMemEnd
result = (cast[ptr T](elemAddr))[]
func `[]`*[T](s: ReservedMemSeq[T], rpos: BackwardsIndex): lent T =
return s[int(s.len) - int(rpos)]
func `[]`*[T](s: var ReservedMemSeq[T], rpos: BackwardsIndex): var T =
return s[int(s.len) - int(rpos)]
func len*[T](s: ReservedMemSeq[T]): int =
s.mem.len div sizeof(T)
proc setLen*[T](s: var ReservedMemSeq[T], newLen: int) =
# TODO call destructors
s.mem.setLen(newLen * sizeof(T))
proc add*[T](s: var ReservedMemSeq[T], val: T) =
let len = s.len
s.setLen(len + 1)
s[len] = val
proc pop*[T](s: var ReservedMemSeq[T]): T =
assert s.usedMemEnd != s.memStart
let lastIdx = s.len - 1
result = s[lastIdx]
s.setLen(lastIdx)
func commitedLen*[T](s: ReservedMemSeq[T]): int =
s.mem.commitedLen div sizeof(T)
func maxLen*[T](s: ReservedMemSeq[T]): int =
s.mem.maxLen div sizeof(T)
|