1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Statistical analysis framework for performing
## basic statistical analysis of data.
## The data is analysed in a single pass, when it
## is pushed to a `RunningStat` or `RunningRegress` object.
##
## `RunningStat` calculates for a single data set
## - n (data count)
## - min (smallest value)
## - max (largest value)
## - sum
## - mean
## - variance
## - varianceS (sample variance)
## - standardDeviation
## - standardDeviationS (sample standard deviation)
## - skewness (the third statistical moment)
## - kurtosis (the fourth statistical moment)
##
## `RunningRegress` calculates for two sets of data
## - n (data count)
## - slope
## - intercept
## - correlation
##
## Procs are provided to calculate statistics on `openArray`s.
##
## However, if more than a single statistical calculation is required, it is more
## efficient to push the data once to a `RunningStat` object and then
## call the numerous statistical procs for the `RunningStat` object:
runnableExamples:
from std/math import almostEqual
template `~=`(a, b: float): bool = almostEqual(a, b)
var statistics: RunningStat # must be var
statistics.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
doAssert statistics.n == 8
doAssert statistics.mean() ~= 2.0
doAssert statistics.variance() ~= 1.5
doAssert statistics.varianceS() ~= 1.714285714285715
doAssert statistics.skewness() ~= 0.8164965809277261
doAssert statistics.skewnessS() ~= 1.018350154434631
doAssert statistics.kurtosis() ~= -1.0
doAssert statistics.kurtosisS() ~= -0.7000000000000008
from std/math import FloatClass, sqrt, pow, round
when defined(nimPreviewSlimSystem):
import std/[assertions, formatfloat]
{.push debugger: off.} # the user does not want to trace a part
# of the standard library!
{.push checks: off, line_dir: off, stack_trace: off.}
type
RunningStat* = object ## An accumulator for statistical data.
n*: int ## amount of pushed data
min*, max*, sum*: float ## self-explaining
mom1, mom2, mom3, mom4: float ## statistical moments, mom1 is mean
RunningRegress* = object ## An accumulator for regression calculations.
n*: int ## amount of pushed data
x_stats*: RunningStat ## stats for the first set of data
y_stats*: RunningStat ## stats for the second set of data
s_xy: float ## accumulated data for combined xy
# ----------- RunningStat --------------------------
proc clear*(s: var RunningStat) =
## Resets `s`.
s.n = 0
s.min = 0.0
s.max = 0.0
s.sum = 0.0
s.mom1 = 0.0
s.mom2 = 0.0
s.mom3 = 0.0
s.mom4 = 0.0
proc push*(s: var RunningStat, x: float) =
## Pushes a value `x` for processing.
if s.n == 0:
s.min = x
s.max = x
else:
if s.min > x: s.min = x
if s.max < x: s.max = x
inc(s.n)
# See Knuth TAOCP vol 2, 3rd edition, page 232
s.sum += x
let n = toFloat(s.n)
let delta = x - s.mom1
let delta_n = delta / toFloat(s.n)
let delta_n2 = delta_n * delta_n
let term1 = delta * delta_n * toFloat(s.n - 1)
s.mom4 += term1 * delta_n2 * (n*n - 3*n + 3) +
6*delta_n2*s.mom2 - 4*delta_n*s.mom3
s.mom3 += term1 * delta_n * (n - 2) - 3*delta_n*s.mom2
s.mom2 += term1
s.mom1 += delta_n
proc push*(s: var RunningStat, x: int) =
## Pushes a value `x` for processing.
##
## `x` is simply converted to `float`
## and the other push operation is called.
s.push(toFloat(x))
proc push*(s: var RunningStat, x: openArray[float|int]) =
## Pushes all values of `x` for processing.
##
## Int values of `x` are simply converted to `float` and
## the other push operation is called.
for val in x:
s.push(val)
proc mean*(s: RunningStat): float =
## Computes the current mean of `s`.
result = s.mom1
proc variance*(s: RunningStat): float =
## Computes the current population variance of `s`.
result = s.mom2 / toFloat(s.n)
proc varianceS*(s: RunningStat): float =
## Computes the current sample variance of `s`.
if s.n > 1: result = s.mom2 / toFloat(s.n - 1)
proc standardDeviation*(s: RunningStat): float =
## Computes the current population standard deviation of `s`.
result = sqrt(variance(s))
proc standardDeviationS*(s: RunningStat): float =
## Computes the current sample standard deviation of `s`.
result = sqrt(varianceS(s))
proc skewness*(s: RunningStat): float =
## Computes the current population skewness of `s`.
result = sqrt(toFloat(s.n)) * s.mom3 / pow(s.mom2, 1.5)
proc skewnessS*(s: RunningStat): float =
## Computes the current sample skewness of `s`.
let s2 = skewness(s)
result = sqrt(toFloat(s.n*(s.n-1)))*s2 / toFloat(s.n-2)
proc kurtosis*(s: RunningStat): float =
## Computes the current population kurtosis of `s`.
result = toFloat(s.n) * s.mom4 / (s.mom2 * s.mom2) - 3.0
proc kurtosisS*(s: RunningStat): float =
## Computes the current sample kurtosis of `s`.
result = toFloat(s.n-1) / toFloat((s.n-2)*(s.n-3)) *
(toFloat(s.n+1)*kurtosis(s) + 6)
proc `+`*(a, b: RunningStat): RunningStat =
## Combines two `RunningStat`s.
##
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets.
result.clear()
result.n = a.n + b.n
let delta = b.mom1 - a.mom1
let delta2 = delta*delta
let delta3 = delta*delta2
let delta4 = delta2*delta2
let n = toFloat(result.n)
result.mom1 = (a.n.float*a.mom1 + b.n.float*b.mom1) / n
result.mom2 = a.mom2 + b.mom2 + delta2 * a.n.float * b.n.float / n
result.mom3 = a.mom3 + b.mom3 +
delta3 * a.n.float * b.n.float * (a.n.float - b.n.float)/(n*n);
result.mom3 += 3.0*delta * (a.n.float*b.mom2 - b.n.float*a.mom2) / n
result.mom4 = a.mom4 + b.mom4 +
delta4*a.n.float*b.n.float * toFloat(a.n*a.n - a.n*b.n + b.n*b.n) /
(n*n*n)
result.mom4 += 6.0*delta2 * (a.n.float*a.n.float*b.mom2 + b.n.float*b.n.float*a.mom2) /
(n*n) +
4.0*delta*(a.n.float*b.mom3 - b.n.float*a.mom3) / n
result.max = max(a.max, b.max)
result.min = min(a.min, b.min)
proc `+=`*(a: var RunningStat, b: RunningStat) {.inline.} =
## Adds the `RunningStat` `b` to `a`.
a = a + b
proc `$`*(a: RunningStat): string =
## Produces a string representation of the `RunningStat`. The exact
## format is currently unspecified and subject to change. Currently
## it contains:
##
## - the number of probes
## - min, max values
## - sum, mean and standard deviation.
result = "RunningStat(\n"
result.add " number of probes: " & $a.n & "\n"
result.add " max: " & $a.max & "\n"
result.add " min: " & $a.min & "\n"
result.add " sum: " & $a.sum & "\n"
result.add " mean: " & $a.mean & "\n"
result.add " std deviation: " & $a.standardDeviation & "\n"
result.add ")"
# ---------------------- standalone array/seq stats ---------------------
proc mean*[T](x: openArray[T]): float =
## Computes the mean of `x`.
var rs: RunningStat
rs.push(x)
result = rs.mean()
proc variance*[T](x: openArray[T]): float =
## Computes the population variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.variance()
proc varianceS*[T](x: openArray[T]): float =
## Computes the sample variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.varianceS()
proc standardDeviation*[T](x: openArray[T]): float =
## Computes the population standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviation()
proc standardDeviationS*[T](x: openArray[T]): float =
## Computes the sample standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviationS()
proc skewness*[T](x: openArray[T]): float =
## Computes the population skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewness()
proc skewnessS*[T](x: openArray[T]): float =
## Computes the sample skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewnessS()
proc kurtosis*[T](x: openArray[T]): float =
## Computes the population kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosis()
proc kurtosisS*[T](x: openArray[T]): float =
## Computes the sample kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosisS()
# ---------------------- Running Regression -----------------------------
proc clear*(r: var RunningRegress) =
## Resets `r`.
r.x_stats.clear()
r.y_stats.clear()
r.s_xy = 0.0
r.n = 0
proc push*(r: var RunningRegress, x, y: float) =
## Pushes two values `x` and `y` for processing.
r.s_xy += (r.x_stats.mean() - x)*(r.y_stats.mean() - y) *
toFloat(r.n) / toFloat(r.n + 1)
r.x_stats.push(x)
r.y_stats.push(y)
inc(r.n)
proc push*(r: var RunningRegress, x, y: int) {.inline.} =
## Pushes two values `x` and `y` for processing.
##
## `x` and `y` are converted to `float`
## and the other push operation is called.
r.push(toFloat(x), toFloat(y))
proc push*(r: var RunningRegress, x, y: openArray[float|int]) =
## Pushes two sets of values `x` and `y` for processing.
assert(x.len == y.len)
for i in 0..<x.len:
r.push(x[i], y[i])
proc slope*(r: RunningRegress): float =
## Computes the current slope of `r`.
let s_xx = r.x_stats.varianceS()*toFloat(r.n - 1)
result = r.s_xy / s_xx
proc intercept*(r: RunningRegress): float =
## Computes the current intercept of `r`.
result = r.y_stats.mean() - r.slope()*r.x_stats.mean()
proc correlation*(r: RunningRegress): float =
## Computes the current correlation of the two data
## sets pushed into `r`.
let t = r.x_stats.standardDeviation() * r.y_stats.standardDeviation()
result = r.s_xy / (toFloat(r.n) * t)
proc `+`*(a, b: RunningRegress): RunningRegress =
## Combines two `RunningRegress` objects.
##
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets
result.clear()
result.x_stats = a.x_stats + b.x_stats
result.y_stats = a.y_stats + b.y_stats
result.n = a.n + b.n
let delta_x = b.x_stats.mean() - a.x_stats.mean()
let delta_y = b.y_stats.mean() - a.y_stats.mean()
result.s_xy = a.s_xy + b.s_xy +
toFloat(a.n*b.n)*delta_x*delta_y/toFloat(result.n)
proc `+=`*(a: var RunningRegress, b: RunningRegress) =
## Adds the `RunningRegress` `b` to `a`.
a = a + b
{.pop.}
{.pop.}
|