1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Nim Contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## This module defines compile-time reflection procs for
## working with types.
##
## Unstable API.
import std/private/since
export system.`$` # for backward compatibility
when defined(nimPreviewSlimSystem):
import std/assertions
type HoleyEnum* = (not Ordinal) and enum ## Enum with holes.
type OrdinalEnum* = Ordinal and enum ## Enum without holes.
runnableExamples:
type A = enum a0 = 2, a1 = 4, a2
type B = enum b0 = 2, b1, b2
assert A is enum
assert A is HoleyEnum
assert A isnot OrdinalEnum
assert B isnot HoleyEnum
assert B is OrdinalEnum
assert int isnot HoleyEnum
type C[T] = enum h0 = 2, h1 = 4
assert C[float] is HoleyEnum
proc name*(t: typedesc): string {.magic: "TypeTrait".} =
## Returns the name of `t`.
##
## Alias for `system.\`$\`(t) <dollars.html#$,typedesc>`_ since Nim v0.20.
runnableExamples:
doAssert name(int) == "int"
doAssert name(seq[string]) == "seq[string]"
proc arity*(t: typedesc): int {.magic: "TypeTrait".} =
## Returns the arity of `t`. This is the number of "type"
## components or the number of generic parameters a given type `t` has.
runnableExamples:
doAssert arity(int) == 0
doAssert arity(seq[string]) == 1
doAssert arity(array[3, int]) == 2
doAssert arity((int, int, float, string)) == 4
proc genericHead*(t: typedesc): typedesc {.magic: "TypeTrait".} =
## Accepts an instantiated generic type and returns its
## uninstantiated form.
## A compile-time error will be produced if the supplied type
## is not generic.
##
## **See also:**
## * `stripGenericParams proc <#stripGenericParams,typedesc>`_
runnableExamples:
type
Foo[T] = object
FooInst = Foo[int]
Foo2 = genericHead(FooInst)
doAssert Foo2 is Foo and Foo is Foo2
doAssert genericHead(Foo[seq[string]]) is Foo
doAssert not compiles(genericHead(int))
type Generic = concept f
type _ = genericHead(typeof(f))
proc bar(a: Generic): typeof(a) = a
doAssert bar(Foo[string].default) == Foo[string]()
doAssert not compiles bar(string.default)
when false: # these don't work yet
doAssert genericHead(Foo[int])[float] is Foo[float]
doAssert seq[int].genericHead is seq
proc stripGenericParams*(t: typedesc): typedesc {.magic: "TypeTrait".} =
## This trait is similar to `genericHead <#genericHead,typedesc>`_, but
## instead of producing an error for non-generic types, it will just return
## them unmodified.
runnableExamples:
type Foo[T] = object
doAssert stripGenericParams(Foo[string]) is Foo
doAssert stripGenericParams(int) is int
proc supportsCopyMem*(t: typedesc): bool {.magic: "TypeTrait".}
## Returns true if `t` is safe to use for `copyMem`:idx:.
##
## Other languages name a type like these `blob`:idx:.
proc hasDefaultValue*(t: typedesc): bool {.magic: "TypeTrait".} =
## Returns true if `t` has a valid default value.
runnableExamples:
{.experimental: "strictNotNil".}
type
NilableObject = ref object
a: int
Object = NilableObject not nil
RequiresInit[T] = object
a {.requiresInit.}: T
assert hasDefaultValue(NilableObject)
assert not hasDefaultValue(Object)
assert hasDefaultValue(string)
assert not hasDefaultValue(var string)
assert not hasDefaultValue(RequiresInit[int])
proc isNamedTuple*(T: typedesc): bool {.magic: "TypeTrait".} =
## Returns true for named tuples, false for any other type.
runnableExamples:
doAssert not isNamedTuple(int)
doAssert not isNamedTuple((string, int))
doAssert isNamedTuple(tuple[name: string, age: int])
template pointerBase*[T](_: typedesc[ptr T | ref T]): typedesc =
## Returns `T` for `ref T | ptr T`.
runnableExamples:
assert (ref int).pointerBase is int
type A = ptr seq[float]
assert A.pointerBase is seq[float]
assert (ref A).pointerBase is A # not seq[float]
assert (var s = "abc"; s[0].addr).typeof.pointerBase is char
T
proc rangeBase*(T: typedesc[range]): typedesc {.magic: "TypeTrait".} =
## Returns the base type for range types, or the type itself otherwise.
##
## **See also:**
## * `rangeBase template <#rangeBase.t,T>`_
runnableExamples:
type MyRange = range[0..5]
type MyEnum = enum a, b, c
type MyEnumRange = range[b..c]
doAssert rangeBase(MyRange) is int
doAssert rangeBase(MyEnumRange) is MyEnum
doAssert rangeBase(range['a'..'z']) is char
template rangeBase*[T: range](a: T): untyped =
## Overload of `rangeBase <#rangeBase,typedesc,static[bool]>`_ for values.
runnableExamples:
type MyRange = range[0..5]
type MyEnum = enum a, b, c
type MyEnumRange = range[b..c]
let x = MyRange(3)
doAssert rangeBase(x) is int
doAssert $typeof(rangeBase(x)) == "int"
doAssert rangeBase(x) == 3
let y: set[MyEnumRange] = {c}
for e in y:
doAssert rangeBase(e) is MyEnum
doAssert $typeof(rangeBase(e)) == "MyEnum"
doAssert rangeBase(e) == c
let z: seq[range['a'..'z']] = @['c']
doAssert rangeBase(z[0]) is char
doAssert $typeof(rangeBase(z[0])) == "char"
doAssert rangeBase(z[0]) == 'c'
rangeBase(typeof(T))(a)
proc distinctBase*(T: typedesc, recursive: static bool = true): typedesc {.magic: "TypeTrait".} =
## Returns the base type for distinct types, or the type itself otherwise.
## If `recursive` is false, only the immediate distinct base will be returned.
##
## **See also:**
## * `distinctBase template <#distinctBase.t,T,static[bool]>`_
runnableExamples:
type MyInt = distinct int
type MyOtherInt = distinct MyInt
doAssert distinctBase(MyInt) is int
doAssert distinctBase(MyOtherInt) is int
doAssert distinctBase(MyOtherInt, false) is MyInt
doAssert distinctBase(int) is int
since (1, 1):
template distinctBase*[T](a: T, recursive: static bool = true): untyped =
## Overload of `distinctBase <#distinctBase,typedesc,static[bool]>`_ for values.
runnableExamples:
type MyInt = distinct int
type MyOtherInt = distinct MyInt
doAssert 12.MyInt.distinctBase == 12
doAssert 12.MyOtherInt.distinctBase == 12
doAssert 12.MyOtherInt.distinctBase(false) is MyInt
doAssert 12.distinctBase == 12
when T is distinct:
distinctBase(typeof(a), recursive)(a)
else: # avoids hint ConvFromXtoItselfNotNeeded
a
proc tupleLen*(T: typedesc[tuple]): int {.magic: "TypeTrait".} =
## Returns the number of elements of the tuple type `T`.
##
## **See also:**
## * `tupleLen template <#tupleLen.t>`_
runnableExamples:
doAssert tupleLen((int, int, float, string)) == 4
doAssert tupleLen(tuple[name: string, age: int]) == 2
template tupleLen*(t: tuple): int =
## Returns the number of elements of the tuple `t`.
##
## **See also:**
## * `tupleLen proc <#tupleLen,typedesc>`_
runnableExamples:
doAssert tupleLen((1, 2)) == 2
tupleLen(typeof(t))
template get*(T: typedesc[tuple], i: static int): untyped =
## Returns the `i`-th element of `T`.
# Note: `[]` currently gives: `Error: no generic parameters allowed for ...`
runnableExamples:
doAssert get((int, int, float, string), 2) is float
typeof(default(T)[i])
type StaticParam*[value: static type] = object
## Used to wrap a static value in `genericParams <#genericParams.t,typedesc>`_.
since (1, 3, 5):
template elementType*(a: untyped): typedesc =
## Returns the element type of `a`, which can be any iterable (over which you
## can iterate).
runnableExamples:
iterator myiter(n: int): auto =
for i in 0 ..< n:
yield i
doAssert elementType(@[1,2]) is int
doAssert elementType("asdf") is char
doAssert elementType(myiter(3)) is int
typeof(block: (for ai in a: ai))
import std/macros
macro enumLen*(T: typedesc[enum]): int =
## Returns the number of items in the enum `T`.
runnableExamples:
type Foo = enum
fooItem1
fooItem2
doAssert Foo.enumLen == 2
let bracketExpr = getType(T)
expectKind(bracketExpr, nnkBracketExpr)
let enumTy = bracketExpr[1]
expectKind(enumTy, nnkEnumTy)
result = newLit(enumTy.len - 1)
macro genericParamsImpl(T: typedesc): untyped =
# auxiliary macro needed, can't do it directly in `genericParams`
result = newNimNode(nnkTupleConstr)
var impl = getTypeImpl(T)
expectKind(impl, nnkBracketExpr)
impl = impl[1]
while true:
case impl.kind
of nnkSym:
impl = impl.getImpl
of nnkTypeDef:
impl = impl[2]
of nnkTypeOfExpr:
impl = getTypeInst(impl[0])
of nnkBracketExpr:
for i in 1..<impl.len:
let ai = impl[i]
var ret: NimNode = nil
case ai.typeKind
of ntyTypeDesc:
ret = ai
of ntyStatic: raiseAssert "unreachable"
else:
# getType from a resolved symbol might return a typedesc symbol.
# If so, use it directly instead of wrapping it in StaticParam.
if (ai.kind == nnkSym and ai.symKind == nskType) or
(ai.kind == nnkBracketExpr and ai[0].kind == nnkSym and
ai[0].symKind == nskType) or ai.kind in {nnkRefTy, nnkVarTy, nnkPtrTy, nnkProcTy}:
ret = ai
elif ai.kind == nnkInfix and ai[0].kind == nnkIdent and
ai[0].strVal == "..":
# For built-in array types, the "2" is translated to "0..1" then
# automagically translated to "range[0..1]". However this is not
# reflected in the AST, thus requiring manual transformation here.
#
# We will also be losing some context here:
# var a: array[10, int]
# will be translated to:
# var a: array[0..9, int]
# after typecheck. This means that we can't get the exact
# definition as typed by the user, which will cause confusion for
# users expecting:
# genericParams(typeof(a)) is (StaticParam(10), int)
# to be true while in fact the result will be:
# genericParams(typeof(a)) is (range[0..9], int)
ret = newTree(nnkBracketExpr, @[bindSym"range", ai])
else:
since (1, 1):
ret = newTree(nnkBracketExpr, @[bindSym"StaticParam", ai])
result.add ret
break
else:
error "wrong kind: " & $impl.kind, impl
since (1, 1):
template genericParams*(T: typedesc): untyped =
## Returns the tuple of generic parameters for the generic type `T`.
##
## **Note:** For the builtin array type, the index generic parameter will
## **always** become a range type after it's bound to a variable.
runnableExamples:
type Foo[T1, T2] = object
doAssert genericParams(Foo[float, string]) is (float, string)
type Bar[N: static float, T] = object
doAssert genericParams(Bar[1.0, string]) is (StaticParam[1.0], string)
doAssert genericParams(Bar[1.0, string]).get(0).value == 1.0
doAssert genericParams(seq[Bar[2.0, string]]).get(0) is Bar[2.0, string]
var s: seq[Bar[3.0, string]]
doAssert genericParams(typeof(s)) is (Bar[3.0, string],)
doAssert genericParams(array[10, int]) is (StaticParam[10], int)
var a: array[10, int]
doAssert genericParams(typeof(a)) is (range[0..9], int)
type T2 = T
genericParamsImpl(T2)
proc hasClosureImpl(n: NimNode): bool = discard "see compiler/vmops.nim"
proc hasClosure*(fn: NimNode): bool {.since: (1, 5, 1).} =
## Returns true if the func/proc/etc `fn` has `closure`.
## `fn` has to be a resolved symbol of kind `nnkSym`. This
## implies that the macro that calls this proc should accept `typed`
## arguments and not `untyped` arguments.
expectKind fn, nnkSym
result = hasClosureImpl(fn)
template toUnsigned*(T: typedesc[SomeInteger and not range]): untyped =
## Returns an unsigned type with same bit size as `T`.
runnableExamples:
assert int8.toUnsigned is uint8
assert uint.toUnsigned is uint
assert int.toUnsigned is uint
# range types are currently unsupported:
assert not compiles(toUnsigned(range[0..7]))
when T is int8: uint8
elif T is int16: uint16
elif T is int32: uint32
elif T is int64: uint64
elif T is int: uint
else: T
template toSigned*(T: typedesc[SomeInteger and not range]): untyped =
## Returns a signed type with same bit size as `T`.
runnableExamples:
assert int8.toSigned is int8
assert uint16.toSigned is int16
# range types are currently unsupported:
assert not compiles(toSigned(range[0..7]))
when T is uint8: int8
elif T is uint16: int16
elif T is uint32: int32
elif T is uint64: int64
elif T is uint: int
else: T
|