1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#
#
# Nim's Runtime Library
# (c) Copyright 2020 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import std/macros
from std/typetraits import OrdinalEnum, HoleyEnum
when defined(nimPreviewSlimSystem):
import std/assertions
# xxx `genEnumCaseStmt` needs tests and runnableExamples
macro genEnumCaseStmt*(typ: typedesc, argSym: typed, default: typed,
userMin, userMax: static[int], normalizer: static[proc(s :string): string]): untyped =
# Generates a case stmt, which assigns the correct enum field given
# a normalized string comparison to the `argSym` input.
# string normalization is done using passed normalizer.
let typ = typ.getTypeInst[1]
let typSym = typ.getTypeImpl.getTypeInst # skip aliases etc to get type sym
let impl = typSym.getImpl[2]
expectKind impl, nnkEnumTy
let normalizerNode = quote: `normalizer`
expectKind normalizerNode, nnkSym
result = nnkCaseStmt.newTree(newCall(normalizerNode, argSym))
# stores all processed field strings to give error msg for ambiguous enums
var foundFields: seq[string] = @[]
var fVal = ""
var fStr = "" # string of current field
var fNum = BiggestInt(0) # int value of current field
for f in impl:
case f.kind
of nnkEmpty: continue # skip first node of `enumTy`
of nnkSym, nnkIdent:
fVal = f.strVal
fStr = fVal
of nnkAccQuoted:
fVal = ""
for ch in f:
fVal.add ch.strVal
fStr = fVal
of nnkEnumFieldDef:
fVal = f[0].strVal
case f[1].kind
of nnkStrLit:
fStr = f[1].strVal
of nnkTupleConstr:
fStr = f[1][1].strVal
fNum = f[1][0].intVal
of nnkIntLit:
fStr = f[0].strVal
fNum = f[1].intVal
else:
let fAst = f[0].getImpl
if fAst.kind == nnkStrLit:
fStr = fAst.strVal
else:
error("Invalid tuple syntax!", f[1])
else: error("Invalid node for enum type `" & $f.kind & "`!", f)
# add field if string not already added
if fNum >= userMin and fNum <= userMax:
fStr = normalizer(fStr)
if fStr notin foundFields:
result.add nnkOfBranch.newTree(newLit fStr, newDotExpr(typ, ident fVal))
foundFields.add fStr
else:
error("Ambiguous enums cannot be parsed, field " & $fStr &
" appears multiple times!", f)
inc fNum
# finally add else branch to raise or use default
if default == nil:
let raiseStmt = quote do:
raise newException(ValueError, "Invalid enum value: " & $`argSym`)
result.add nnkElse.newTree(raiseStmt)
else:
expectKind(default, nnkSym)
result.add nnkElse.newTree(default)
macro enumFullRange(a: typed): untyped =
newNimNode(nnkBracket).add(a.getType[1][1..^1])
macro enumNames(a: typed): untyped =
# this could be exported too; in particular this could be useful for enum with holes.
result = newNimNode(nnkBracket)
for ai in a.getType[1][1..^1]:
assert ai.kind == nnkSym
result.add newLit ai.strVal
iterator items*[T: HoleyEnum](E: typedesc[T]): T =
## Iterates over an enum with holes.
runnableExamples:
type
A = enum
a0 = 2
a1 = 4
a2
B[T] = enum
b0 = 2
b1 = 4
from std/sequtils import toSeq
assert A.toSeq == [a0, a1, a2]
assert B[float].toSeq == [B[float].b0, B[float].b1]
for a in enumFullRange(E): yield a
func span(T: typedesc[HoleyEnum]): int =
(T.high.ord - T.low.ord) + 1
const invalidSlot = uint8.high
proc genLookup[T: typedesc[HoleyEnum]](_: T): auto =
const n = span(T)
var i = 0
assert n <= invalidSlot.int
var ret {.noinit.}: array[n, uint8]
for ai in mitems(ret): ai = invalidSlot
for ai in items(T):
ret[ai.ord - T.low.ord] = uint8(i)
inc(i)
return ret
func symbolRankImpl[T](a: T): int {.inline.} =
const n = T.span
const thres = 255 # must be <= `invalidSlot`, but this should be tuned.
when n <= thres:
const lookup = genLookup(T)
let lookup2 {.global.} = lookup # xxx improve pending https://github.com/timotheecour/Nim/issues/553
#[
This could be optimized using a hash adapted to `T` (possible since it's known at CT)
to get better key distribution before indexing into the lookup table table.
]#
{.noSideEffect.}: # because it's immutable
let ret = lookup2[ord(a) - T.low.ord]
if ret != invalidSlot: return ret.int
else:
var i = 0
# we could also generate a case statement as optimization
for ai in items(T):
if ai == a: return i
inc(i)
raise newException(IndexDefect, $ord(a) & " invalid for " & $T)
template symbolRank*[T: enum](a: T): int =
## Returns the index in which `a` is listed in `T`.
##
## The cost for a `HoleyEnum` is implementation defined, currently optimized
## for small enums, otherwise is `O(T.enumLen)`.
runnableExamples:
type
A = enum # HoleyEnum
a0 = -3
a1 = 10
a2
a3 = (20, "f3Alt")
B = enum # OrdinalEnum
b0
b1
b2
C = enum # OrdinalEnum
c0 = 10
c1
c2
assert a2.symbolRank == 2
assert b2.symbolRank == 2
assert c2.symbolRank == 2
assert c2.ord == 12
assert a2.ord == 11
var invalid = 7.A
doAssertRaises(IndexDefect): discard invalid.symbolRank
when T is Ordinal: ord(a) - T.low.ord.static
else: symbolRankImpl(a)
proc rangeBase(T: typedesc): typedesc {.magic: "TypeTrait".}
# skip one level of range; return the base type of a range type
func symbolName*[T: enum](a: T): string =
## Returns the symbol name of an enum.
##
## This uses `symbolRank`.
runnableExamples:
type B = enum
b0 = (10, "kb0")
b1 = "kb1"
b2
let b = B.low
assert b.symbolName == "b0"
assert $b == "kb0"
static: assert B.high.symbolName == "b2"
type C = enum # HoleyEnum
c0 = -3
c1 = 4
c2 = 20
assert c1.symbolName == "c1"
when T is range:
const names = enumNames(rangeBase T)
else:
const names = enumNames(T)
names[a.symbolRank]
|