1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
|
#
#
# Nim's Runtime Library
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Low level allocator for Nim. Has been designed to support the GC.
{.push profiler:off.}
include osalloc
import std/private/syslocks
import std/sysatomics
template track(op, address, size) =
when defined(memTracker):
memTrackerOp(op, address, size)
# We manage *chunks* of memory. Each chunk is a multiple of the page size.
# Each chunk starts at an address that is divisible by the page size.
# Small chunks may be divided into smaller cells of reusable pointers to reduce the number of page allocations.
# An allocation of a small pointer looks approximately like this
#[
alloc -> rawAlloc -> No free chunk available > Request a new page from tslf -> result = chunk.data -------------+
| |
v |
Free chunk available |
| |
v v
Fetch shared cells -> No free cells available -> Advance acc -> result = chunk.data + chunk.acc -------> return
(may not add new cells) ^
| |
v |
Free cells available -> result = chunk.freeList -> Advance chunk.freeList -----------------------------------+
]#
# so it is split into 3 paths, where the last path is preferred to prevent unnecessary allocations.
#
#
# A deallocation of a small pointer then looks like this
#[
dealloc -> rawDealloc -> chunk.owner == addr(a) --------------> This thread owns the chunk ------> The current chunk is active -> Chunk is completely unused -----> Chunk references no foreign cells
| | (Add cell into the current chunk) | Return the current chunk back to tlsf
| | | |
v v v v
A different thread owns this chunk. The current chunk is not active. chunk.free was < size Chunk references foreign cells, noop
Add the cell to a.sharedFreeLists Add the cell into the active chunk Activate the chunk (end)
(end) (end) (end)
]#
# So "true" deallocation is delayed for as long as possible in favor of reusing cells.
const
nimMinHeapPages {.intdefine.} = 128 # 0.5 MB
SmallChunkSize = PageSize
MaxFli = when sizeof(int) > 2: 30 else: 14
MaxLog2Sli = 5 # 32, this cannot be increased without changing 'uint32'
# everywhere!
MaxSli = 1 shl MaxLog2Sli
FliOffset = 6
RealFli = MaxFli - FliOffset
# size of chunks in last matrix bin
MaxBigChunkSize = int(1'i32 shl MaxFli - 1'i32 shl (MaxFli-MaxLog2Sli-1))
HugeChunkSize = MaxBigChunkSize + 1
type
PTrunk = ptr Trunk
Trunk = object
next: PTrunk # all nodes are connected with this pointer
key: int # start address at bit 0
bits: array[0..IntsPerTrunk-1, uint] # a bit vector
TrunkBuckets = array[0..255, PTrunk]
IntSet = object
data: TrunkBuckets
# ------------- chunk table ---------------------------------------------------
# We use a PtrSet of chunk starts and a table[Page, chunksize] for chunk
# endings of big chunks. This is needed by the merging operation. The only
# remaining operation is best-fit for big chunks. Since there is a size-limit
# for big chunks (because greater than the limit means they are returned back
# to the OS), a fixed size array can be used.
type
PLLChunk = ptr LLChunk
LLChunk = object ## *low-level* chunk
size: int # remaining size
acc: int # accumulator
next: PLLChunk # next low-level chunk; only needed for dealloc
PAvlNode = ptr AvlNode
AvlNode = object
link: array[0..1, PAvlNode] # Left (0) and right (1) links
key, upperBound: int
level: int
const
RegionHasLock = false # hasThreadSupport and defined(gcDestructors)
type
FreeCell {.final, pure.} = object
# A free cell is a pointer that has been freed, meaning it became available for reuse.
# It may become foreign if it is lent to a chunk that did not create it, doing so reduces the amount of needed pages.
next: ptr FreeCell # next free cell in chunk (overlaid with refcount)
when not defined(gcDestructors):
zeroField: int # 0 means cell is not used (overlaid with typ field)
# 1 means cell is manually managed pointer
# otherwise a PNimType is stored in there
else:
alignment: int
PChunk = ptr BaseChunk
PBigChunk = ptr BigChunk
PSmallChunk = ptr SmallChunk
BaseChunk {.pure, inheritable.} = object
prevSize: int # size of previous chunk; for coalescing
# 0th bit == 1 if 'used
size: int # if < PageSize it is a small chunk
owner: ptr MemRegion
SmallChunk = object of BaseChunk
next, prev: PSmallChunk # chunks of the same size
freeList: ptr FreeCell # Singly linked list of cells. They may be from foreign chunks or from the current chunk.
# Should be `nil` when the chunk isn't active in `a.freeSmallChunks`.
free: int32 # Bytes this chunk is able to provide using both the accumulator and free cells.
# When a cell is considered foreign, its source chunk's free field is NOT adjusted until it
# reaches dealloc while the source chunk is active.
# Instead, the receiving chunk gains the capacity and thus reserves space in the foreign chunk.
acc: uint32 # Offset from data, used when there are no free cells available but the chunk is considered free.
foreignCells: int # When a free cell is given to a chunk that is not its origin,
# both the cell and the source chunk are considered foreign.
# Receiving a foreign cell can happen both when deallocating from another thread or when
# the active chunk in `a.freeSmallChunks` is not the current chunk.
# Freeing a chunk while `foreignCells > 0` leaks memory as all references to it become lost.
data {.align: MemAlign.}: UncheckedArray[byte] # start of usable memory
BigChunk = object of BaseChunk # not necessarily > PageSize!
next, prev: PBigChunk # chunks of the same (or bigger) size
data {.align: MemAlign.}: UncheckedArray[byte] # start of usable memory
HeapLinks = object
len: int
chunks: array[30, (PBigChunk, int)]
next: ptr HeapLinks
MemRegion = object
when not defined(gcDestructors):
minLargeObj, maxLargeObj: int
freeSmallChunks: array[0..max(1, SmallChunkSize div MemAlign-1), PSmallChunk]
# List of available chunks per size class. Only one is expected to be active per class.
when defined(gcDestructors):
sharedFreeLists: array[0..max(1, SmallChunkSize div MemAlign-1), ptr FreeCell]
# When a thread frees a pointer it did not create, it must not adjust the counters.
# Instead, the cell is placed here and deferred until the next allocation.
flBitmap: uint32
slBitmap: array[RealFli, uint32]
matrix: array[RealFli, array[MaxSli, PBigChunk]]
llmem: PLLChunk
currMem, maxMem, freeMem, occ: int # memory sizes (allocated from OS)
lastSize: int # needed for the case that OS gives us pages linearly
when RegionHasLock:
lock: SysLock
when defined(gcDestructors):
sharedFreeListBigChunks: PBigChunk # make no attempt at avoiding false sharing for now for this object field
chunkStarts: IntSet
when not defined(gcDestructors):
root, deleted, last, freeAvlNodes: PAvlNode
lockActive, locked, blockChunkSizeIncrease: bool # if locked, we cannot free pages.
nextChunkSize: int
when not defined(gcDestructors):
bottomData: AvlNode
heapLinks: HeapLinks
when defined(nimTypeNames):
allocCounter, deallocCounter: int
template smallChunkOverhead(): untyped = sizeof(SmallChunk)
template bigChunkOverhead(): untyped = sizeof(BigChunk)
when hasThreadSupport:
template loada(x: untyped): untyped = atomicLoadN(unsafeAddr x, ATOMIC_RELAXED)
template storea(x, y: untyped) = atomicStoreN(unsafeAddr x, y, ATOMIC_RELAXED)
when false:
# not yet required
template atomicStatDec(x, diff: untyped) = discard atomicSubFetch(unsafeAddr x, diff, ATOMIC_RELAXED)
template atomicStatInc(x, diff: untyped) = discard atomicAddFetch(unsafeAddr x, diff, ATOMIC_RELAXED)
else:
template loada(x: untyped): untyped = x
template storea(x, y: untyped) = x = y
template atomicStatDec(x, diff: untyped) = dec x, diff
template atomicStatInc(x, diff: untyped) = inc x, diff
const
fsLookupTable: array[byte, int8] = [
-1'i8, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7
]
proc msbit(x: uint32): int {.inline.} =
let a = if x <= 0xff_ff'u32:
(if x <= 0xff: 0 else: 8)
else:
(if x <= 0xff_ff_ff'u32: 16 else: 24)
result = int(fsLookupTable[byte(x shr a)]) + a
proc lsbit(x: uint32): int {.inline.} =
msbit(x and ((not x) + 1))
proc setBit(nr: int; dest: var uint32) {.inline.} =
dest = dest or (1u32 shl (nr and 0x1f))
proc clearBit(nr: int; dest: var uint32) {.inline.} =
dest = dest and not (1u32 shl (nr and 0x1f))
proc mappingSearch(r, fl, sl: var int) {.inline.} =
#let t = (1 shl (msbit(uint32 r) - MaxLog2Sli)) - 1
# This diverges from the standard TLSF algorithm because we need to ensure
# PageSize alignment:
let t = roundup((1 shl (msbit(uint32 r) - MaxLog2Sli)), PageSize) - 1
r = r + t
r = r and not t
r = min(r, MaxBigChunkSize).int
fl = msbit(uint32 r)
sl = (r shr (fl - MaxLog2Sli)) - MaxSli
dec fl, FliOffset
sysAssert((r and PageMask) == 0, "mappingSearch: still not aligned")
# See http://www.gii.upv.es/tlsf/files/papers/tlsf_desc.pdf for details of
# this algorithm.
proc mappingInsert(r: int): tuple[fl, sl: int] {.inline.} =
sysAssert((r and PageMask) == 0, "mappingInsert: still not aligned")
result.fl = msbit(uint32 r)
result.sl = (r shr (result.fl - MaxLog2Sli)) - MaxSli
dec result.fl, FliOffset
template mat(): untyped = a.matrix[fl][sl]
proc findSuitableBlock(a: MemRegion; fl, sl: var int): PBigChunk {.inline.} =
let tmp = a.slBitmap[fl] and (not 0u32 shl sl)
result = nil
if tmp != 0:
sl = lsbit(tmp)
result = mat()
else:
fl = lsbit(a.flBitmap and (not 0u32 shl (fl + 1)))
if fl > 0:
sl = lsbit(a.slBitmap[fl])
result = mat()
template clearBits(sl, fl) =
clearBit(sl, a.slBitmap[fl])
if a.slBitmap[fl] == 0u32:
# do not forget to cascade:
clearBit(fl, a.flBitmap)
proc removeChunkFromMatrix(a: var MemRegion; b: PBigChunk) =
let (fl, sl) = mappingInsert(b.size)
if b.next != nil: b.next.prev = b.prev
if b.prev != nil: b.prev.next = b.next
if mat() == b:
mat() = b.next
if mat() == nil:
clearBits(sl, fl)
b.prev = nil
b.next = nil
proc removeChunkFromMatrix2(a: var MemRegion; b: PBigChunk; fl, sl: int) =
mat() = b.next
if mat() != nil:
mat().prev = nil
else:
clearBits(sl, fl)
b.prev = nil
b.next = nil
proc addChunkToMatrix(a: var MemRegion; b: PBigChunk) =
let (fl, sl) = mappingInsert(b.size)
b.prev = nil
b.next = mat()
if mat() != nil:
mat().prev = b
mat() = b
setBit(sl, a.slBitmap[fl])
setBit(fl, a.flBitmap)
proc incCurrMem(a: var MemRegion, bytes: int) {.inline.} =
atomicStatInc(a.currMem, bytes)
proc decCurrMem(a: var MemRegion, bytes: int) {.inline.} =
a.maxMem = max(a.maxMem, a.currMem)
atomicStatDec(a.currMem, bytes)
proc getMaxMem(a: var MemRegion): int =
# Since we update maxPagesCount only when freeing pages,
# maxPagesCount may not be up to date. Thus we use the
# maximum of these both values here:
result = max(a.currMem, a.maxMem)
const nimMaxHeap {.intdefine.} = 0
proc allocPages(a: var MemRegion, size: int): pointer =
when nimMaxHeap != 0:
if a.occ + size > nimMaxHeap * 1024 * 1024:
raiseOutOfMem()
osAllocPages(size)
proc tryAllocPages(a: var MemRegion, size: int): pointer =
when nimMaxHeap != 0:
if a.occ + size > nimMaxHeap * 1024 * 1024:
raiseOutOfMem()
osTryAllocPages(size)
proc llAlloc(a: var MemRegion, size: int): pointer =
# *low-level* alloc for the memory managers data structures. Deallocation
# is done at the end of the allocator's life time.
if a.llmem == nil or size > a.llmem.size:
# the requested size is ``roundup(size+sizeof(LLChunk), PageSize)``, but
# since we know ``size`` is a (small) constant, we know the requested size
# is one page:
sysAssert roundup(size+sizeof(LLChunk), PageSize) == PageSize, "roundup 6"
var old = a.llmem # can be nil and is correct with nil
a.llmem = cast[PLLChunk](allocPages(a, PageSize))
when defined(nimAvlcorruption):
trackLocation(a.llmem, PageSize)
incCurrMem(a, PageSize)
a.llmem.size = PageSize - sizeof(LLChunk)
a.llmem.acc = sizeof(LLChunk)
a.llmem.next = old
result = cast[pointer](cast[int](a.llmem) + a.llmem.acc)
dec(a.llmem.size, size)
inc(a.llmem.acc, size)
zeroMem(result, size)
when not defined(gcDestructors):
proc getBottom(a: var MemRegion): PAvlNode =
result = addr(a.bottomData)
if result.link[0] == nil:
result.link[0] = result
result.link[1] = result
proc allocAvlNode(a: var MemRegion, key, upperBound: int): PAvlNode =
if a.freeAvlNodes != nil:
result = a.freeAvlNodes
a.freeAvlNodes = a.freeAvlNodes.link[0]
else:
result = cast[PAvlNode](llAlloc(a, sizeof(AvlNode)))
when defined(nimAvlcorruption):
cprintf("tracking location: %p\n", result)
result.key = key
result.upperBound = upperBound
let bottom = getBottom(a)
result.link[0] = bottom
result.link[1] = bottom
result.level = 1
#when defined(nimAvlcorruption):
# track("allocAvlNode", result, sizeof(AvlNode))
sysAssert(bottom == addr(a.bottomData), "bottom data")
sysAssert(bottom.link[0] == bottom, "bottom link[0]")
sysAssert(bottom.link[1] == bottom, "bottom link[1]")
proc deallocAvlNode(a: var MemRegion, n: PAvlNode) {.inline.} =
n.link[0] = a.freeAvlNodes
a.freeAvlNodes = n
proc addHeapLink(a: var MemRegion; p: PBigChunk, size: int): ptr HeapLinks =
var it = addr(a.heapLinks)
while it != nil and it.len >= it.chunks.len: it = it.next
if it == nil:
var n = cast[ptr HeapLinks](llAlloc(a, sizeof(HeapLinks)))
n.next = a.heapLinks.next
a.heapLinks.next = n
n.chunks[0] = (p, size)
n.len = 1
result = n
else:
let L = it.len
it.chunks[L] = (p, size)
inc it.len
result = it
when not defined(gcDestructors):
include "system/avltree"
proc llDeallocAll(a: var MemRegion) =
var it = a.llmem
while it != nil:
# we know each block in the list has the size of 1 page:
var next = it.next
osDeallocPages(it, PageSize)
it = next
a.llmem = nil
proc intSetGet(t: IntSet, key: int): PTrunk =
var it = t.data[key and high(t.data)]
while it != nil:
if it.key == key: return it
it = it.next
result = nil
proc intSetPut(a: var MemRegion, t: var IntSet, key: int): PTrunk =
result = intSetGet(t, key)
if result == nil:
result = cast[PTrunk](llAlloc(a, sizeof(result[])))
result.next = t.data[key and high(t.data)]
t.data[key and high(t.data)] = result
result.key = key
proc contains(s: IntSet, key: int): bool =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
result = (t.bits[u shr IntShift] and (uint(1) shl (u and IntMask))) != 0
else:
result = false
proc incl(a: var MemRegion, s: var IntSet, key: int) =
var t = intSetPut(a, s, key shr TrunkShift)
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] or (uint(1) shl (u and IntMask))
proc excl(s: var IntSet, key: int) =
var t = intSetGet(s, key shr TrunkShift)
if t != nil:
var u = key and TrunkMask
t.bits[u shr IntShift] = t.bits[u shr IntShift] and not
(uint(1) shl (u and IntMask))
iterator elements(t: IntSet): int {.inline.} =
# while traversing it is forbidden to change the set!
for h in 0..high(t.data):
var r = t.data[h]
while r != nil:
var i = 0
while i <= high(r.bits):
var w = r.bits[i] # taking a copy of r.bits[i] here is correct, because
# modifying operations are not allowed during traversation
var j = 0
while w != 0: # test all remaining bits for zero
if (w and 1) != 0: # the bit is set!
yield (r.key shl TrunkShift) or (i shl IntShift +% j)
inc(j)
w = w shr 1
inc(i)
r = r.next
proc isSmallChunk(c: PChunk): bool {.inline.} =
result = c.size <= SmallChunkSize-smallChunkOverhead()
proc chunkUnused(c: PChunk): bool {.inline.} =
result = (c.prevSize and 1) == 0
iterator allObjects(m: var MemRegion): pointer {.inline.} =
m.locked = true
for s in elements(m.chunkStarts):
# we need to check here again as it could have been modified:
if s in m.chunkStarts:
let c = cast[PChunk](s shl PageShift)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
let size = c.size
var a = cast[int](addr(c.data))
let limit = a + c.acc.int
while a <% limit:
yield cast[pointer](a)
a = a +% size
else:
let c = cast[PBigChunk](c)
yield addr(c.data)
m.locked = false
proc iterToProc*(iter: typed, envType: typedesc; procName: untyped) {.
magic: "Plugin", compileTime.}
when not defined(gcDestructors):
proc isCell(p: pointer): bool {.inline.} =
result = cast[ptr FreeCell](p).zeroField >% 1
# ------------- chunk management ----------------------------------------------
proc pageIndex(c: PChunk): int {.inline.} =
result = cast[int](c) shr PageShift
proc pageIndex(p: pointer): int {.inline.} =
result = cast[int](p) shr PageShift
proc pageAddr(p: pointer): PChunk {.inline.} =
result = cast[PChunk](cast[int](p) and not PageMask)
#sysAssert(Contains(allocator.chunkStarts, pageIndex(result)))
when false:
proc writeFreeList(a: MemRegion) =
var it = a.freeChunksList
c_fprintf(stdout, "freeChunksList: %p\n", it)
while it != nil:
c_fprintf(stdout, "it: %p, next: %p, prev: %p, size: %ld\n",
it, it.next, it.prev, it.size)
it = it.next
proc requestOsChunks(a: var MemRegion, size: int): PBigChunk =
when not defined(emscripten):
if not a.blockChunkSizeIncrease:
let usedMem = a.occ #a.currMem # - a.freeMem
if usedMem < 64 * 1024:
a.nextChunkSize = PageSize*4
else:
a.nextChunkSize = min(roundup(usedMem shr 2, PageSize), a.nextChunkSize * 2)
a.nextChunkSize = min(a.nextChunkSize, MaxBigChunkSize).int
var size = size
if size > a.nextChunkSize:
result = cast[PBigChunk](allocPages(a, size))
else:
result = cast[PBigChunk](tryAllocPages(a, a.nextChunkSize))
if result == nil:
result = cast[PBigChunk](allocPages(a, size))
a.blockChunkSizeIncrease = true
else:
size = a.nextChunkSize
incCurrMem(a, size)
inc(a.freeMem, size)
let heapLink = a.addHeapLink(result, size)
when defined(debugHeapLinks):
cprintf("owner: %p; result: %p; next pointer %p; size: %ld\n", addr(a),
result, heapLink, size)
when defined(memtracker):
trackLocation(addr result.size, sizeof(int))
sysAssert((cast[int](result) and PageMask) == 0, "requestOsChunks 1")
#zeroMem(result, size)
result.next = nil
result.prev = nil
result.size = size
# update next.prevSize:
var nxt = cast[int](result) +% size
sysAssert((nxt and PageMask) == 0, "requestOsChunks 2")
var next = cast[PChunk](nxt)
if pageIndex(next) in a.chunkStarts:
#echo("Next already allocated!")
next.prevSize = size or (next.prevSize and 1)
# set result.prevSize:
var lastSize = if a.lastSize != 0: a.lastSize else: PageSize
var prv = cast[int](result) -% lastSize
sysAssert((nxt and PageMask) == 0, "requestOsChunks 3")
var prev = cast[PChunk](prv)
if pageIndex(prev) in a.chunkStarts and prev.size == lastSize:
#echo("Prev already allocated!")
result.prevSize = lastSize or (result.prevSize and 1)
else:
result.prevSize = 0 or (result.prevSize and 1) # unknown
# but do not overwrite 'used' field
a.lastSize = size # for next request
sysAssert((cast[int](result) and PageMask) == 0, "requestOschunks: unaligned chunk")
proc isAccessible(a: MemRegion, p: pointer): bool {.inline.} =
result = contains(a.chunkStarts, pageIndex(p))
proc contains[T](list, x: T): bool =
var it = list
while it != nil:
if it == x: return true
it = it.next
proc listAdd[T](head: var T, c: T) {.inline.} =
sysAssert(c notin head, "listAdd 1")
sysAssert c.prev == nil, "listAdd 2"
sysAssert c.next == nil, "listAdd 3"
c.next = head
if head != nil:
sysAssert head.prev == nil, "listAdd 4"
head.prev = c
head = c
proc listRemove[T](head: var T, c: T) {.inline.} =
sysAssert(c in head, "listRemove")
if c == head:
head = c.next
sysAssert c.prev == nil, "listRemove 2"
if head != nil: head.prev = nil
else:
sysAssert c.prev != nil, "listRemove 3"
c.prev.next = c.next
if c.next != nil: c.next.prev = c.prev
c.next = nil
c.prev = nil
proc updatePrevSize(a: var MemRegion, c: PBigChunk,
prevSize: int) {.inline.} =
var ri = cast[PChunk](cast[int](c) +% c.size)
sysAssert((cast[int](ri) and PageMask) == 0, "updatePrevSize")
if isAccessible(a, ri):
ri.prevSize = prevSize or (ri.prevSize and 1)
proc splitChunk2(a: var MemRegion, c: PBigChunk, size: int): PBigChunk =
result = cast[PBigChunk](cast[int](c) +% size)
result.size = c.size - size
track("result.size", addr result.size, sizeof(int))
when not defined(nimOptimizedSplitChunk):
# still active because of weird codegen issue on some of our CIs:
result.next = nil
result.prev = nil
# size and not used:
result.prevSize = size
result.owner = addr a
sysAssert((size and 1) == 0, "splitChunk 2")
sysAssert((size and PageMask) == 0,
"splitChunk: size is not a multiple of the PageSize")
updatePrevSize(a, c, result.size)
c.size = size
incl(a, a.chunkStarts, pageIndex(result))
proc splitChunk(a: var MemRegion, c: PBigChunk, size: int) =
let rest = splitChunk2(a, c, size)
addChunkToMatrix(a, rest)
proc freeBigChunk(a: var MemRegion, c: PBigChunk) =
var c = c
sysAssert(c.size >= PageSize, "freeBigChunk")
inc(a.freeMem, c.size)
c.prevSize = c.prevSize and not 1 # set 'used' to false
when coalescLeft:
let prevSize = c.prevSize
if prevSize != 0:
var le = cast[PChunk](cast[int](c) -% prevSize)
sysAssert((cast[int](le) and PageMask) == 0, "freeBigChunk 4")
if isAccessible(a, le) and chunkUnused(le):
sysAssert(not isSmallChunk(le), "freeBigChunk 5")
if not isSmallChunk(le) and le.size < MaxBigChunkSize:
removeChunkFromMatrix(a, cast[PBigChunk](le))
inc(le.size, c.size)
excl(a.chunkStarts, pageIndex(c))
c = cast[PBigChunk](le)
if c.size > MaxBigChunkSize:
let rest = splitChunk2(a, c, MaxBigChunkSize)
when defined(nimOptimizedSplitChunk):
rest.next = nil
rest.prev = nil
addChunkToMatrix(a, c)
c = rest
when coalescRight:
var ri = cast[PChunk](cast[int](c) +% c.size)
sysAssert((cast[int](ri) and PageMask) == 0, "freeBigChunk 2")
if isAccessible(a, ri) and chunkUnused(ri):
sysAssert(not isSmallChunk(ri), "freeBigChunk 3")
if not isSmallChunk(ri) and c.size < MaxBigChunkSize:
removeChunkFromMatrix(a, cast[PBigChunk](ri))
inc(c.size, ri.size)
excl(a.chunkStarts, pageIndex(ri))
if c.size > MaxBigChunkSize:
let rest = splitChunk2(a, c, MaxBigChunkSize)
addChunkToMatrix(a, rest)
addChunkToMatrix(a, c)
proc getBigChunk(a: var MemRegion, size: int): PBigChunk =
sysAssert(size > 0, "getBigChunk 2")
var size = size # roundup(size, PageSize)
var fl = 0
var sl = 0
mappingSearch(size, fl, sl)
sysAssert((size and PageMask) == 0, "getBigChunk: unaligned chunk")
result = findSuitableBlock(a, fl, sl)
when RegionHasLock:
if not a.lockActive:
a.lockActive = true
initSysLock(a.lock)
acquireSys a.lock
if result == nil:
if size < nimMinHeapPages * PageSize:
result = requestOsChunks(a, nimMinHeapPages * PageSize)
splitChunk(a, result, size)
else:
result = requestOsChunks(a, size)
# if we over allocated split the chunk:
if result.size > size:
splitChunk(a, result, size)
result.owner = addr a
else:
removeChunkFromMatrix2(a, result, fl, sl)
if result.size >= size + PageSize:
splitChunk(a, result, size)
# set 'used' to to true:
result.prevSize = 1
track("setUsedToFalse", addr result.size, sizeof(int))
sysAssert result.owner == addr a, "getBigChunk: No owner set!"
incl(a, a.chunkStarts, pageIndex(result))
dec(a.freeMem, size)
when RegionHasLock:
releaseSys a.lock
proc getHugeChunk(a: var MemRegion; size: int): PBigChunk =
result = cast[PBigChunk](allocPages(a, size))
when RegionHasLock:
if not a.lockActive:
a.lockActive = true
initSysLock(a.lock)
acquireSys a.lock
incCurrMem(a, size)
# XXX add this to the heap links. But also remove it from it later.
when false: a.addHeapLink(result, size)
sysAssert((cast[int](result) and PageMask) == 0, "getHugeChunk")
result.next = nil
result.prev = nil
result.size = size
# set 'used' to to true:
result.prevSize = 1
result.owner = addr a
incl(a, a.chunkStarts, pageIndex(result))
when RegionHasLock:
releaseSys a.lock
proc freeHugeChunk(a: var MemRegion; c: PBigChunk) =
let size = c.size
sysAssert(size >= HugeChunkSize, "freeHugeChunk: invalid size")
excl(a.chunkStarts, pageIndex(c))
decCurrMem(a, size)
osDeallocPages(c, size)
proc getSmallChunk(a: var MemRegion): PSmallChunk =
var res = getBigChunk(a, PageSize)
sysAssert res.prev == nil, "getSmallChunk 1"
sysAssert res.next == nil, "getSmallChunk 2"
result = cast[PSmallChunk](res)
# -----------------------------------------------------------------------------
when not defined(gcDestructors):
proc isAllocatedPtr(a: MemRegion, p: pointer): bool {.benign.}
when true:
template allocInv(a: MemRegion): bool = true
else:
proc allocInv(a: MemRegion): bool =
## checks some (not all yet) invariants of the allocator's data structures.
for s in low(a.freeSmallChunks)..high(a.freeSmallChunks):
var c = a.freeSmallChunks[s]
while not (c == nil):
if c.next == c:
echo "[SYSASSERT] c.next == c"
return false
if not (c.size == s * MemAlign):
echo "[SYSASSERT] c.size != s * MemAlign"
return false
var it = c.freeList
while not (it == nil):
if not (it.zeroField == 0):
echo "[SYSASSERT] it.zeroField != 0"
c_printf("%ld %p\n", it.zeroField, it)
return false
it = it.next
c = c.next
result = true
when false:
var
rsizes: array[50_000, int]
rsizesLen: int
proc trackSize(size: int) =
rsizes[rsizesLen] = size
inc rsizesLen
proc untrackSize(size: int) =
for i in 0 .. rsizesLen-1:
if rsizes[i] == size:
rsizes[i] = rsizes[rsizesLen-1]
dec rsizesLen
return
c_fprintf(stdout, "%ld\n", size)
sysAssert(false, "untracked size!")
else:
template trackSize(x) = discard
template untrackSize(x) = discard
proc deallocBigChunk(a: var MemRegion, c: PBigChunk) =
when RegionHasLock:
acquireSys a.lock
dec a.occ, c.size
untrackSize(c.size)
sysAssert a.occ >= 0, "rawDealloc: negative occupied memory (case B)"
when not defined(gcDestructors):
a.deleted = getBottom(a)
del(a, a.root, cast[int](addr(c.data)))
if c.size >= HugeChunkSize: freeHugeChunk(a, c)
else: freeBigChunk(a, c)
when RegionHasLock:
releaseSys a.lock
when defined(gcDestructors):
template atomicPrepend(head, elem: untyped) =
# see also https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
when hasThreadSupport:
while true:
elem.next.storea head.loada
if atomicCompareExchangeN(addr head, addr elem.next, elem, weak = true, ATOMIC_RELEASE, ATOMIC_RELAXED):
break
else:
elem.next.storea head.loada
head.storea elem
proc addToSharedFreeListBigChunks(a: var MemRegion; c: PBigChunk) {.inline.} =
sysAssert c.next == nil, "c.next pointer must be nil"
atomicPrepend a.sharedFreeListBigChunks, c
proc addToSharedFreeList(c: PSmallChunk; f: ptr FreeCell; size: int) {.inline.} =
atomicPrepend c.owner.sharedFreeLists[size], f
const MaxSteps = 20
proc compensateCounters(a: var MemRegion; c: PSmallChunk; size: int) =
# rawDealloc did NOT do the usual:
# `inc(c.free, size); dec(a.occ, size)` because it wasn't the owner of these
# memory locations. We have to compensate here for these for the entire list.
var it = c.freeList
var total = 0
while it != nil:
inc total, size
let chunk = cast[PSmallChunk](pageAddr(it))
if c != chunk:
# The cell is foreign, potentially even from a foreign thread.
# It must block the current chunk from being freed, as doing so would leak memory.
inc c.foreignCells
it = it.next
# By not adjusting the foreign chunk we reserve space in it to prevent deallocation
inc(c.free, total)
dec(a.occ, total)
proc freeDeferredObjects(a: var MemRegion; root: PBigChunk) =
var it = root
var maxIters = MaxSteps # make it time-bounded
while true:
let rest = it.next.loada
it.next.storea nil
deallocBigChunk(a, cast[PBigChunk](it))
if maxIters == 0:
if rest != nil:
addToSharedFreeListBigChunks(a, rest)
sysAssert a.sharedFreeListBigChunks != nil, "re-enqueing failed"
break
it = rest
dec maxIters
if it == nil: break
proc rawAlloc(a: var MemRegion, requestedSize: int): pointer =
when defined(nimTypeNames):
inc(a.allocCounter)
sysAssert(allocInv(a), "rawAlloc: begin")
sysAssert(roundup(65, 8) == 72, "rawAlloc: roundup broken")
var size = roundup(requestedSize, MemAlign)
sysAssert(size >= sizeof(FreeCell), "rawAlloc: requested size too small")
sysAssert(size >= requestedSize, "insufficient allocated size!")
#c_fprintf(stdout, "alloc; size: %ld; %ld\n", requestedSize, size)
if size <= SmallChunkSize-smallChunkOverhead():
template fetchSharedCells(tc: PSmallChunk) =
# Consumes cells from (potentially) foreign threads from `a.sharedFreeLists[s]`
when defined(gcDestructors):
if tc.freeList == nil:
when hasThreadSupport:
# Steal the entire list from `sharedFreeList`:
tc.freeList = atomicExchangeN(addr a.sharedFreeLists[s], nil, ATOMIC_RELAXED)
else:
tc.freeList = a.sharedFreeLists[s]
a.sharedFreeLists[s] = nil
# if `tc.freeList` isn't nil, `tc` will gain capacity.
# We must calculate how much it gained and how many foreign cells are included.
compensateCounters(a, tc, size)
# allocate a small block: for small chunks, we use only its next pointer
let s = size div MemAlign
var c = a.freeSmallChunks[s]
if c == nil:
# There is no free chunk of the requested size available, we need a new one.
c = getSmallChunk(a)
# init all fields in case memory didn't get zeroed
c.freeList = nil
c.foreignCells = 0
sysAssert c.size == PageSize, "rawAlloc 3"
c.size = size
c.acc = size.uint32
c.free = SmallChunkSize - smallChunkOverhead() - size.int32
sysAssert c.owner == addr(a), "rawAlloc: No owner set!"
c.next = nil
c.prev = nil
# Shared cells are fetched here in case `c.size * 2 >= SmallChunkSize - smallChunkOverhead()`.
# For those single cell chunks, we would otherwise have to allocate a new one almost every time.
fetchSharedCells(c)
if c.free >= size:
# Because removals from `a.freeSmallChunks[s]` only happen in the other alloc branch and during dealloc,
# we must not add it to the list if it cannot be used the next time a pointer of `size` bytes is needed.
listAdd(a.freeSmallChunks[s], c)
result = addr(c.data)
sysAssert((cast[int](result) and (MemAlign-1)) == 0, "rawAlloc 4")
else:
# There is a free chunk of the requested size available, use it.
sysAssert(allocInv(a), "rawAlloc: begin c != nil")
sysAssert c.next != c, "rawAlloc 5"
#if c.size != size:
# c_fprintf(stdout, "csize: %lld; size %lld\n", c.size, size)
sysAssert c.size == size, "rawAlloc 6"
if c.freeList == nil:
sysAssert(c.acc.int + smallChunkOverhead() + size <= SmallChunkSize,
"rawAlloc 7")
result = cast[pointer](cast[int](addr(c.data)) +% c.acc.int)
inc(c.acc, size)
else:
# There are free cells available, prefer them over the accumulator
result = c.freeList
when not defined(gcDestructors):
sysAssert(c.freeList.zeroField == 0, "rawAlloc 8")
c.freeList = c.freeList.next
if cast[PSmallChunk](pageAddr(result)) != c:
# This cell isn't a blocker for the current chunk's deallocation anymore
dec(c.foreignCells)
else:
sysAssert(c == cast[PSmallChunk](pageAddr(result)), "rawAlloc: Bad cell")
# Even if the cell we return is foreign, the local chunk's capacity decreases.
# The capacity was previously reserved in the source chunk (when it first got allocated),
# then added into the current chunk during dealloc,
# so the source chunk will not be freed or leak memory because of this.
dec(c.free, size)
sysAssert((cast[int](result) and (MemAlign-1)) == 0, "rawAlloc 9")
sysAssert(allocInv(a), "rawAlloc: end c != nil")
# We fetch deferred cells *after* advancing `c.freeList`/`acc` to adjust `c.free`.
# If after the adjustment it turns out there's free cells available,
# the chunk stays in `a.freeSmallChunks[s]` and the need for a new chunk is delayed.
fetchSharedCells(c)
sysAssert(allocInv(a), "rawAlloc: before c.free < size")
if c.free < size:
# Even after fetching shared cells the chunk has no usable memory left. It is no longer the active chunk
sysAssert(allocInv(a), "rawAlloc: before listRemove test")
listRemove(a.freeSmallChunks[s], c)
sysAssert(allocInv(a), "rawAlloc: end listRemove test")
sysAssert(((cast[int](result) and PageMask) - smallChunkOverhead()) %%
size == 0, "rawAlloc 21")
sysAssert(allocInv(a), "rawAlloc: end small size")
inc a.occ, size
trackSize(c.size)
else:
when defined(gcDestructors):
when hasThreadSupport:
let deferredFrees = atomicExchangeN(addr a.sharedFreeListBigChunks, nil, ATOMIC_RELAXED)
else:
let deferredFrees = a.sharedFreeListBigChunks
a.sharedFreeListBigChunks = nil
if deferredFrees != nil:
freeDeferredObjects(a, deferredFrees)
size = requestedSize + bigChunkOverhead() # roundup(requestedSize+bigChunkOverhead(), PageSize)
# allocate a large block
var c = if size >= HugeChunkSize: getHugeChunk(a, size)
else: getBigChunk(a, size)
sysAssert c.prev == nil, "rawAlloc 10"
sysAssert c.next == nil, "rawAlloc 11"
result = addr(c.data)
sysAssert((cast[int](c) and (MemAlign-1)) == 0, "rawAlloc 13")
sysAssert((cast[int](c) and PageMask) == 0, "rawAlloc: Not aligned on a page boundary")
when not defined(gcDestructors):
if a.root == nil: a.root = getBottom(a)
add(a, a.root, cast[int](result), cast[int](result)+%size)
inc a.occ, c.size
trackSize(c.size)
sysAssert(isAccessible(a, result), "rawAlloc 14")
sysAssert(allocInv(a), "rawAlloc: end")
when logAlloc: cprintf("var pointer_%p = alloc(%ld) # %p\n", result, requestedSize, addr a)
proc rawAlloc0(a: var MemRegion, requestedSize: int): pointer =
result = rawAlloc(a, requestedSize)
zeroMem(result, requestedSize)
proc rawDealloc(a: var MemRegion, p: pointer) =
when defined(nimTypeNames):
inc(a.deallocCounter)
#sysAssert(isAllocatedPtr(a, p), "rawDealloc: no allocated pointer")
sysAssert(allocInv(a), "rawDealloc: begin")
var c = pageAddr(p)
sysAssert(c != nil, "rawDealloc: begin")
if isSmallChunk(c):
# `p` is within a small chunk:
var c = cast[PSmallChunk](c)
let s = c.size
# ^ We might access thread foreign storage here.
# The other thread cannot possibly free this block as it's still alive.
var f = cast[ptr FreeCell](p)
if c.owner == addr(a):
# We own the block, there is no foreign thread involved.
dec a.occ, s
untrackSize(s)
sysAssert a.occ >= 0, "rawDealloc: negative occupied memory (case A)"
sysAssert(((cast[int](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 3")
when not defined(gcDestructors):
#echo("setting to nil: ", $cast[int](addr(f.zeroField)))
sysAssert(f.zeroField != 0, "rawDealloc 1")
f.zeroField = 0
when overwriteFree:
# set to 0xff to check for usage after free bugs:
nimSetMem(cast[pointer](cast[int](p) +% sizeof(FreeCell)), -1'i32,
s -% sizeof(FreeCell))
let activeChunk = a.freeSmallChunks[s div MemAlign]
if activeChunk != nil and c != activeChunk:
# This pointer is not part of the active chunk, lend it out
# and do not adjust the current chunk (same logic as compensateCounters.)
# Put the cell into the active chunk,
# may prevent a queue of available chunks from forming in a.freeSmallChunks[s div MemAlign].
# This queue would otherwise waste memory in the form of free cells until we return to those chunks.
f.next = activeChunk.freeList
activeChunk.freeList = f # lend the cell
inc(activeChunk.free, s) # By not adjusting the current chunk's capacity it is prevented from being freed
inc(activeChunk.foreignCells) # The cell is now considered foreign from the perspective of the active chunk
else:
f.next = c.freeList
c.freeList = f
if c.free < s:
# The chunk could not have been active as it didn't have enough space to give
listAdd(a.freeSmallChunks[s div MemAlign], c)
inc(c.free, s)
else:
inc(c.free, s)
# Free only if the entire chunk is unused and there are no borrowed cells.
# If the chunk were to be freed while it references foreign cells,
# the foreign chunks will leak memory and can never be freed.
if c.free == SmallChunkSize-smallChunkOverhead() and c.foreignCells == 0:
listRemove(a.freeSmallChunks[s div MemAlign], c)
c.size = SmallChunkSize
freeBigChunk(a, cast[PBigChunk](c))
else:
when logAlloc: cprintf("dealloc(pointer_%p) # SMALL FROM %p CALLER %p\n", p, c.owner, addr(a))
when defined(gcDestructors):
addToSharedFreeList(c, f, s div MemAlign)
sysAssert(((cast[int](p) and PageMask) - smallChunkOverhead()) %%
s == 0, "rawDealloc 2")
else:
# set to 0xff to check for usage after free bugs:
when overwriteFree: nimSetMem(p, -1'i32, c.size -% bigChunkOverhead())
when logAlloc: cprintf("dealloc(pointer_%p) # BIG %p\n", p, c.owner)
when defined(gcDestructors):
if c.owner == addr(a):
deallocBigChunk(a, cast[PBigChunk](c))
else:
addToSharedFreeListBigChunks(c.owner[], cast[PBigChunk](c))
else:
deallocBigChunk(a, cast[PBigChunk](c))
sysAssert(allocInv(a), "rawDealloc: end")
#when logAlloc: cprintf("dealloc(pointer_%p)\n", p)
when not defined(gcDestructors):
proc isAllocatedPtr(a: MemRegion, p: pointer): bool =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[int](p) and (PageSize-1)) -%
smallChunkOverhead()
result = (c.acc.int >% offset) and (offset %% c.size == 0) and
(cast[ptr FreeCell](p).zeroField >% 1)
else:
var c = cast[PBigChunk](c)
result = p == addr(c.data) and cast[ptr FreeCell](p).zeroField >% 1
proc prepareForInteriorPointerChecking(a: var MemRegion) {.inline.} =
a.minLargeObj = lowGauge(a.root)
a.maxLargeObj = highGauge(a.root)
proc interiorAllocatedPtr(a: MemRegion, p: pointer): pointer =
if isAccessible(a, p):
var c = pageAddr(p)
if not chunkUnused(c):
if isSmallChunk(c):
var c = cast[PSmallChunk](c)
var offset = (cast[int](p) and (PageSize-1)) -%
smallChunkOverhead()
if c.acc.int >% offset:
sysAssert(cast[int](addr(c.data)) +% offset ==
cast[int](p), "offset is not what you think it is")
var d = cast[ptr FreeCell](cast[int](addr(c.data)) +%
offset -% (offset %% c.size))
if d.zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var c = cast[PBigChunk](c)
var d = addr(c.data)
if p >= d and cast[ptr FreeCell](d).zeroField >% 1:
result = d
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
else:
var q = cast[int](p)
if q >=% a.minLargeObj and q <=% a.maxLargeObj:
# this check is highly effective! Test fails for 99,96% of all checks on
# an x86-64.
var avlNode = inRange(a.root, q)
if avlNode != nil:
var k = cast[pointer](avlNode.key)
var c = cast[PBigChunk](pageAddr(k))
sysAssert(addr(c.data) == k, " k is not the same as addr(c.data)!")
if cast[ptr FreeCell](k).zeroField >% 1:
result = k
sysAssert isAllocatedPtr(a, result), " result wrong pointer!"
proc ptrSize(p: pointer): int =
when not defined(gcDestructors):
var x = cast[pointer](cast[int](p) -% sizeof(FreeCell))
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size -% sizeof(FreeCell)
if not isSmallChunk(c):
dec result, bigChunkOverhead()
else:
var c = pageAddr(p)
sysAssert(not chunkUnused(c), "ptrSize")
result = c.size
if not isSmallChunk(c):
dec result, bigChunkOverhead()
proc alloc(allocator: var MemRegion, size: Natural): pointer {.gcsafe.} =
when not defined(gcDestructors):
result = rawAlloc(allocator, size+sizeof(FreeCell))
cast[ptr FreeCell](result).zeroField = 1 # mark it as used
sysAssert(not isAllocatedPtr(allocator, result), "alloc")
result = cast[pointer](cast[int](result) +% sizeof(FreeCell))
track("alloc", result, size)
else:
result = rawAlloc(allocator, size)
proc alloc0(allocator: var MemRegion, size: Natural): pointer =
result = alloc(allocator, size)
zeroMem(result, size)
proc dealloc(allocator: var MemRegion, p: pointer) =
when not defined(gcDestructors):
sysAssert(p != nil, "dealloc: p is nil")
var x = cast[pointer](cast[int](p) -% sizeof(FreeCell))
sysAssert(x != nil, "dealloc: x is nil")
sysAssert(isAccessible(allocator, x), "is not accessible")
sysAssert(cast[ptr FreeCell](x).zeroField == 1, "dealloc: object header corrupted")
rawDealloc(allocator, x)
sysAssert(not isAllocatedPtr(allocator, x), "dealloc: object still accessible")
track("dealloc", p, 0)
else:
rawDealloc(allocator, p)
proc realloc(allocator: var MemRegion, p: pointer, newsize: Natural): pointer =
if newsize > 0:
result = alloc(allocator, newsize)
if p != nil:
copyMem(result, p, min(ptrSize(p), newsize))
dealloc(allocator, p)
elif p != nil:
dealloc(allocator, p)
proc realloc0(allocator: var MemRegion, p: pointer, oldsize, newsize: Natural): pointer =
result = realloc(allocator, p, newsize)
if newsize > oldsize:
zeroMem(cast[pointer](cast[uint](result) + uint(oldsize)), newsize - oldsize)
proc deallocOsPages(a: var MemRegion) =
# we free every 'ordinarily' allocated page by iterating over the page bits:
var it = addr(a.heapLinks)
while true:
let next = it.next
for i in 0..it.len-1:
let (p, size) = it.chunks[i]
when defined(debugHeapLinks):
cprintf("owner %p; dealloc A: %p size: %ld; next: %p\n", addr(a),
it, size, next)
sysAssert size >= PageSize, "origSize too small"
osDeallocPages(p, size)
it = next
if it == nil: break
# And then we free the pages that are in use for the page bits:
llDeallocAll(a)
proc getFreeMem(a: MemRegion): int {.inline.} = result = a.freeMem
proc getTotalMem(a: MemRegion): int {.inline.} = result = a.currMem
proc getOccupiedMem(a: MemRegion): int {.inline.} =
result = a.occ
# a.currMem - a.freeMem
when defined(nimTypeNames):
proc getMemCounters(a: MemRegion): (int, int) {.inline.} =
(a.allocCounter, a.deallocCounter)
# ---------------------- thread memory region -------------------------------
template instantiateForRegion(allocator: untyped) {.dirty.} =
{.push stackTrace: off.}
when defined(nimFulldebug):
proc interiorAllocatedPtr*(p: pointer): pointer =
result = interiorAllocatedPtr(allocator, p)
proc isAllocatedPtr*(p: pointer): bool =
let p = cast[pointer](cast[int](p)-%ByteAddress(sizeof(Cell)))
result = isAllocatedPtr(allocator, p)
proc deallocOsPages = deallocOsPages(allocator)
proc allocImpl(size: Natural): pointer =
result = alloc(allocator, size)
proc alloc0Impl(size: Natural): pointer =
result = alloc0(allocator, size)
proc deallocImpl(p: pointer) =
dealloc(allocator, p)
proc reallocImpl(p: pointer, newSize: Natural): pointer =
result = realloc(allocator, p, newSize)
proc realloc0Impl(p: pointer, oldSize, newSize: Natural): pointer =
result = realloc(allocator, p, newSize)
if newSize > oldSize:
zeroMem(cast[pointer](cast[uint](result) + uint(oldSize)), newSize - oldSize)
when false:
proc countFreeMem(): int =
# only used for assertions
var it = allocator.freeChunksList
while it != nil:
inc(result, it.size)
it = it.next
when hasThreadSupport and not defined(gcDestructors):
proc addSysExitProc(quitProc: proc() {.noconv.}) {.importc: "atexit", header: "<stdlib.h>".}
var sharedHeap: MemRegion
var heapLock: SysLock
initSysLock(heapLock)
addSysExitProc(proc() {.noconv.} = deinitSys(heapLock))
proc getFreeMem(): int =
#sysAssert(result == countFreeMem())
result = allocator.freeMem
proc getTotalMem(): int =
result = allocator.currMem
proc getOccupiedMem(): int =
result = allocator.occ #getTotalMem() - getFreeMem()
proc getMaxMem*(): int =
result = getMaxMem(allocator)
when defined(nimTypeNames):
proc getMemCounters*(): (int, int) = getMemCounters(allocator)
# -------------------- shared heap region ----------------------------------
proc allocSharedImpl(size: Natural): pointer =
when hasThreadSupport and not defined(gcDestructors):
acquireSys(heapLock)
result = alloc(sharedHeap, size)
releaseSys(heapLock)
else:
result = allocImpl(size)
proc allocShared0Impl(size: Natural): pointer =
result = allocSharedImpl(size)
zeroMem(result, size)
proc deallocSharedImpl(p: pointer) =
when hasThreadSupport and not defined(gcDestructors):
acquireSys(heapLock)
dealloc(sharedHeap, p)
releaseSys(heapLock)
else:
deallocImpl(p)
proc reallocSharedImpl(p: pointer, newSize: Natural): pointer =
when hasThreadSupport and not defined(gcDestructors):
acquireSys(heapLock)
result = realloc(sharedHeap, p, newSize)
releaseSys(heapLock)
else:
result = reallocImpl(p, newSize)
proc reallocShared0Impl(p: pointer, oldSize, newSize: Natural): pointer =
when hasThreadSupport and not defined(gcDestructors):
acquireSys(heapLock)
result = realloc0(sharedHeap, p, oldSize, newSize)
releaseSys(heapLock)
else:
result = realloc0Impl(p, oldSize, newSize)
when hasThreadSupport:
when defined(gcDestructors):
proc getFreeSharedMem(): int =
allocator.freeMem
proc getTotalSharedMem(): int =
allocator.currMem
proc getOccupiedSharedMem(): int =
allocator.occ
else:
template sharedMemStatsShared(v: int) =
acquireSys(heapLock)
result = v
releaseSys(heapLock)
proc getFreeSharedMem(): int =
sharedMemStatsShared(sharedHeap.freeMem)
proc getTotalSharedMem(): int =
sharedMemStatsShared(sharedHeap.currMem)
proc getOccupiedSharedMem(): int =
sharedMemStatsShared(sharedHeap.occ)
#sharedMemStatsShared(sharedHeap.currMem - sharedHeap.freeMem)
{.pop.}
{.pop.}
|