1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Channel support for threads.
##
## **Note**: This is part of the system module. Do not import it directly.
## To activate thread support compile with the `--threads:on` command line switch.
##
## **Note:** Channels are designed for the `Thread` type. They are unstable when
## used with `spawn`
##
## **Note:** The current implementation of message passing does
## not work with cyclic data structures.
##
## **Note:** Channels cannot be passed between threads. Use globals or pass
## them by `ptr`.
##
## Example
## =======
## The following is a simple example of two different ways to use channels:
## blocking and non-blocking.
##
## ```Nim
## # Be sure to compile with --threads:on.
## # The channels and threads modules are part of system and should not be
## # imported.
## import std/os
##
## # Channels can either be:
## # - declared at the module level, or
## # - passed to procedures by ptr (raw pointer) -- see note on safety.
## #
## # For simplicity, in this example a channel is declared at module scope.
## # Channels are generic, and they include support for passing objects between
## # threads.
## # Note that objects passed through channels will be deeply copied.
## var chan: Channel[string]
##
## # This proc will be run in another thread using the threads module.
## proc firstWorker() =
## chan.send("Hello World!")
##
## # This is another proc to run in a background thread. This proc takes a while
## # to send the message since it sleeps for 2 seconds (or 2000 milliseconds).
## proc secondWorker() =
## sleep(2000)
## chan.send("Another message")
##
## # Initialize the channel.
## chan.open()
##
## # Launch the worker.
## var worker1: Thread[void]
## createThread(worker1, firstWorker)
##
## # Block until the message arrives, then print it out.
## echo chan.recv() # "Hello World!"
##
## # Wait for the thread to exit before moving on to the next example.
## worker1.joinThread()
##
## # Launch the other worker.
## var worker2: Thread[void]
## createThread(worker2, secondWorker)
## # This time, use a non-blocking approach with tryRecv.
## # Since the main thread is not blocked, it could be used to perform other
## # useful work while it waits for data to arrive on the channel.
## while true:
## let tried = chan.tryRecv()
## if tried.dataAvailable:
## echo tried.msg # "Another message"
## break
##
## echo "Pretend I'm doing useful work..."
## # For this example, sleep in order not to flood stdout with the above
## # message.
## sleep(400)
##
## # Wait for the second thread to exit before cleaning up the channel.
## worker2.joinThread()
##
## # Clean up the channel.
## chan.close()
## ```
##
## Sample output
## -------------
## The program should output something similar to this, but keep in mind that
## exact results may vary in the real world:
##
## Hello World!
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Pretend I'm doing useful work...
## Another message
##
## Passing Channels Safely
## -----------------------
## Note that when passing objects to procedures on another thread by pointer
## (for example through a thread's argument), objects created using the default
## allocator will use thread-local, GC-managed memory. Thus it is generally
## safer to store channel objects in global variables (as in the above example),
## in which case they will use a process-wide (thread-safe) shared heap.
##
## However, it is possible to manually allocate shared memory for channels
## using e.g. `system.allocShared0` and pass these pointers through thread
## arguments:
##
## ```Nim
## proc worker(channel: ptr Channel[string]) =
## let greeting = channel[].recv()
## echo greeting
##
## proc localChannelExample() =
## # Use allocShared0 to allocate some shared-heap memory and zero it.
## # The usual warnings about dealing with raw pointers apply. Exercise caution.
## var channel = cast[ptr Channel[string]](
## allocShared0(sizeof(Channel[string]))
## )
## channel[].open()
## # Create a thread which will receive the channel as an argument.
## var thread: Thread[ptr Channel[string]]
## createThread(thread, worker, channel)
## channel[].send("Hello from the main thread!")
## # Clean up resources.
## thread.joinThread()
## channel[].close()
## deallocShared(channel)
##
## localChannelExample() # "Hello from the main thread!"
## ```
when not declared(ThisIsSystem):
{.error: "You must not import this module explicitly".}
import std/private/syslocks
type
pbytes = ptr UncheckedArray[byte]
RawChannel {.pure, final.} = object ## msg queue for a thread
rd, wr, count, mask, maxItems: int
data: pbytes
lock: SysLock
cond: SysCond
elemType: PNimType
ready: bool
when not usesDestructors:
region: MemRegion
PRawChannel = ptr RawChannel
LoadStoreMode = enum mStore, mLoad
Channel*[TMsg] {.gcsafe.} = RawChannel ## a channel for thread communication
const ChannelDeadMask = -2
proc initRawChannel(p: pointer, maxItems: int) =
var c = cast[PRawChannel](p)
initSysLock(c.lock)
initSysCond(c.cond)
c.mask = -1
c.maxItems = maxItems
proc deinitRawChannel(p: pointer) =
var c = cast[PRawChannel](p)
# we need to grab the lock to be safe against sending threads!
acquireSys(c.lock)
c.mask = ChannelDeadMask
when not usesDestructors:
deallocOsPages(c.region)
else:
if c.data != nil: deallocShared(c.data)
deinitSys(c.lock)
deinitSysCond(c.cond)
when not usesDestructors:
proc storeAux(dest, src: pointer, mt: PNimType, t: PRawChannel,
mode: LoadStoreMode) {.benign.}
proc storeAux(dest, src: pointer, n: ptr TNimNode, t: PRawChannel,
mode: LoadStoreMode) {.benign.} =
var
d = cast[int](dest)
s = cast[int](src)
case n.kind
of nkSlot: storeAux(cast[pointer](d +% n.offset),
cast[pointer](s +% n.offset), n.typ, t, mode)
of nkList:
for i in 0..n.len-1: storeAux(dest, src, n.sons[i], t, mode)
of nkCase:
copyMem(cast[pointer](d +% n.offset), cast[pointer](s +% n.offset),
n.typ.size)
var m = selectBranch(src, n)
if m != nil: storeAux(dest, src, m, t, mode)
of nkNone: sysAssert(false, "storeAux")
proc storeAux(dest, src: pointer, mt: PNimType, t: PRawChannel,
mode: LoadStoreMode) =
template `+!`(p: pointer; x: int): pointer =
cast[pointer](cast[int](p) +% x)
var
d = cast[int](dest)
s = cast[int](src)
sysAssert(mt != nil, "mt == nil")
case mt.kind
of tyString:
if mode == mStore:
var x = cast[PPointer](dest)
var s2 = cast[PPointer](s)[]
if s2 == nil:
x[] = nil
else:
var ss = cast[NimString](s2)
var ns = cast[NimString](alloc(t.region, GenericSeqSize + ss.len+1))
copyMem(ns, ss, ss.len+1 + GenericSeqSize)
x[] = ns
else:
var x = cast[PPointer](dest)
var s2 = cast[PPointer](s)[]
if s2 == nil:
unsureAsgnRef(x, s2)
else:
let y = copyDeepString(cast[NimString](s2))
#echo "loaded ", cast[int](y), " ", cast[string](y)
unsureAsgnRef(x, y)
dealloc(t.region, s2)
of tySequence:
var s2 = cast[PPointer](src)[]
var seq = cast[PGenericSeq](s2)
var x = cast[PPointer](dest)
if s2 == nil:
if mode == mStore:
x[] = nil
else:
unsureAsgnRef(x, nil)
else:
sysAssert(dest != nil, "dest == nil")
if mode == mStore:
x[] = alloc0(t.region, align(GenericSeqSize, mt.base.align) +% seq.len *% mt.base.size)
else:
unsureAsgnRef(x, newSeq(mt, seq.len))
var dst = cast[int](cast[PPointer](dest)[])
var dstseq = cast[PGenericSeq](dst)
dstseq.len = seq.len
dstseq.reserved = seq.len
for i in 0..seq.len-1:
storeAux(
cast[pointer](dst +% align(GenericSeqSize, mt.base.align) +% i *% mt.base.size),
cast[pointer](cast[int](s2) +% align(GenericSeqSize, mt.base.align) +%
i *% mt.base.size),
mt.base, t, mode)
if mode != mStore: dealloc(t.region, s2)
of tyObject:
if mt.base != nil:
storeAux(dest, src, mt.base, t, mode)
else:
# copy type field:
var pint = cast[ptr PNimType](dest)
pint[] = cast[ptr PNimType](src)[]
storeAux(dest, src, mt.node, t, mode)
of tyTuple:
storeAux(dest, src, mt.node, t, mode)
of tyArray, tyArrayConstr:
for i in 0..(mt.size div mt.base.size)-1:
storeAux(cast[pointer](d +% i *% mt.base.size),
cast[pointer](s +% i *% mt.base.size), mt.base, t, mode)
of tyRef:
var s = cast[PPointer](src)[]
var x = cast[PPointer](dest)
if s == nil:
if mode == mStore:
x[] = nil
else:
unsureAsgnRef(x, nil)
else:
#let size = if mt.base.kind == tyObject: cast[ptr PNimType](s)[].size
# else: mt.base.size
if mode == mStore:
let dyntype = when declared(usrToCell): usrToCell(s).typ
else: mt
let size = dyntype.base.size
# we store the real dynamic 'ref type' at offset 0, so that
# no information is lost
let a = alloc0(t.region, size+sizeof(pointer))
x[] = a
cast[PPointer](a)[] = dyntype
storeAux(a +! sizeof(pointer), s, dyntype.base, t, mode)
else:
let dyntype = cast[ptr PNimType](s)[]
var obj = newObj(dyntype, dyntype.base.size)
unsureAsgnRef(x, obj)
storeAux(x[], s +! sizeof(pointer), dyntype.base, t, mode)
dealloc(t.region, s)
else:
copyMem(dest, src, mt.size) # copy raw bits
proc rawSend(q: PRawChannel, data: pointer, typ: PNimType) =
## Adds an `item` to the end of the queue `q`.
var cap = q.mask+1
if q.count >= cap:
# start with capacity for 2 entries in the queue:
if cap == 0: cap = 1
when not usesDestructors:
var n = cast[pbytes](alloc0(q.region, cap*2*typ.size))
else:
var n = cast[pbytes](allocShared0(cap*2*typ.size))
var z = 0
var i = q.rd
var c = q.count
while c > 0:
dec c
copyMem(addr(n[z*typ.size]), addr(q.data[i*typ.size]), typ.size)
i = (i + 1) and q.mask
inc z
if q.data != nil:
when not usesDestructors:
dealloc(q.region, q.data)
else:
deallocShared(q.data)
q.data = n
q.mask = cap*2 - 1
q.wr = q.count
q.rd = 0
when not usesDestructors:
storeAux(addr(q.data[q.wr * typ.size]), data, typ, q, mStore)
else:
copyMem(addr(q.data[q.wr * typ.size]), data, typ.size)
inc q.count
q.wr = (q.wr + 1) and q.mask
proc rawRecv(q: PRawChannel, data: pointer, typ: PNimType) =
sysAssert q.count > 0, "rawRecv"
dec q.count
when not usesDestructors:
storeAux(data, addr(q.data[q.rd * typ.size]), typ, q, mLoad)
else:
copyMem(data, addr(q.data[q.rd * typ.size]), typ.size)
q.rd = (q.rd + 1) and q.mask
template lockChannel(q, action): untyped =
acquireSys(q.lock)
action
releaseSys(q.lock)
proc sendImpl(q: PRawChannel, typ: PNimType, msg: pointer, noBlock: bool): bool =
if q.mask == ChannelDeadMask:
sysFatal(DeadThreadDefect, "cannot send message; thread died")
acquireSys(q.lock)
if q.maxItems > 0:
# Wait until count is less than maxItems
if noBlock and q.count >= q.maxItems:
releaseSys(q.lock)
return
while q.count >= q.maxItems:
waitSysCond(q.cond, q.lock)
rawSend(q, msg, typ)
q.elemType = typ
signalSysCond(q.cond)
releaseSys(q.lock)
result = true
proc send*[TMsg](c: var Channel[TMsg], msg: sink TMsg) {.inline.} =
## Sends a message to a thread. `msg` is deeply copied.
discard sendImpl(cast[PRawChannel](addr c), cast[PNimType](getTypeInfo(msg)), unsafeAddr(msg), false)
when defined(gcDestructors):
wasMoved(msg)
proc trySend*[TMsg](c: var Channel[TMsg], msg: sink TMsg): bool {.inline.} =
## Tries to send a message to a thread.
##
## `msg` is deeply copied. Doesn't block.
##
## Returns `false` if the message was not sent because number of pending items
## in the channel exceeded `maxItems`.
result = sendImpl(cast[PRawChannel](addr c), cast[PNimType](getTypeInfo(msg)), unsafeAddr(msg), true)
when defined(gcDestructors):
if result:
wasMoved(msg)
proc llRecv(q: PRawChannel, res: pointer, typ: PNimType) =
q.ready = true
while q.count <= 0:
waitSysCond(q.cond, q.lock)
q.ready = false
if typ != q.elemType:
releaseSys(q.lock)
raise newException(ValueError, "cannot receive message of wrong type")
rawRecv(q, res, typ)
if q.maxItems > 0 and q.count == q.maxItems - 1:
# Parent thread is awaiting in send. Wake it up.
signalSysCond(q.cond)
proc recv*[TMsg](c: var Channel[TMsg]): TMsg =
## Receives a message from the channel `c`.
##
## This blocks until a message has arrived!
## You may use `peek proc <#peek,Channel[TMsg]>`_ to avoid the blocking.
var q = cast[PRawChannel](addr(c))
acquireSys(q.lock)
llRecv(q, addr(result), cast[PNimType](getTypeInfo(result)))
releaseSys(q.lock)
proc tryRecv*[TMsg](c: var Channel[TMsg]): tuple[dataAvailable: bool,
msg: TMsg] =
## Tries to receive a message from the channel `c`, but this can fail
## for all sort of reasons, including contention.
##
## If it fails, it returns `(false, default(msg))` otherwise it
## returns `(true, msg)`.
var q = cast[PRawChannel](addr(c))
if q.mask != ChannelDeadMask:
if tryAcquireSys(q.lock):
if q.count > 0:
llRecv(q, addr(result.msg), cast[PNimType](getTypeInfo(result.msg)))
result.dataAvailable = true
releaseSys(q.lock)
proc peek*[TMsg](c: var Channel[TMsg]): int =
## Returns the current number of messages in the channel `c`.
##
## Returns -1 if the channel has been closed.
##
## **Note**: This is dangerous to use as it encourages races.
## It's much better to use `tryRecv proc <#tryRecv,Channel[TMsg]>`_ instead.
var q = cast[PRawChannel](addr(c))
if q.mask != ChannelDeadMask:
lockChannel(q):
result = q.count
else:
result = -1
proc open*[TMsg](c: var Channel[TMsg], maxItems: int = 0) =
## Opens a channel `c` for inter thread communication.
##
## The `send` operation will block until number of unprocessed items is
## less than `maxItems`.
##
## For unlimited queue set `maxItems` to 0.
initRawChannel(addr(c), maxItems)
proc close*[TMsg](c: var Channel[TMsg]) =
## Closes a channel `c` and frees its associated resources.
deinitRawChannel(addr(c))
proc ready*[TMsg](c: var Channel[TMsg]): bool =
## Returns true if some thread is waiting on the channel `c` for
## new messages.
var q = cast[PRawChannel](addr(c))
result = q.ready
|