1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
# comparison operators:
proc `==`*[Enum: enum](x, y: Enum): bool {.magic: "EqEnum", noSideEffect.} =
## Checks whether values within the *same enum* have the same underlying value.
runnableExamples:
type
Enum1 = enum
field1 = 3, field2
Enum2 = enum
place1, place2 = 3
var
e1 = field1
e2 = place2.ord.Enum1
assert e1 == e2
assert not compiles(e1 == place2) # raises error
proc `==`*(x, y: pointer): bool {.magic: "EqRef", noSideEffect.} =
## Checks for equality between two `pointer` variables.
runnableExamples:
var # this is a wildly dangerous example
a = cast[pointer](0)
b = cast[pointer](nil)
assert a == b # true due to the special meaning of `nil`/0 as a pointer
proc `==`*(x, y: string): bool {.magic: "EqStr", noSideEffect.}
## Checks for equality between two `string` variables.
proc `==`*(x, y: char): bool {.magic: "EqCh", noSideEffect.}
## Checks for equality between two `char` variables.
proc `==`*(x, y: bool): bool {.magic: "EqB", noSideEffect.}
## Checks for equality between two `bool` variables.
proc `==`*[T](x, y: set[T]): bool {.magic: "EqSet", noSideEffect.} =
## Checks for equality between two variables of type `set`.
runnableExamples:
assert {1, 2, 2, 3} == {1, 2, 3} # duplication in sets is ignored
proc `==`*[T](x, y: ref T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ref` variables refer to the same item.
proc `==`*[T](x, y: ptr T): bool {.magic: "EqRef", noSideEffect.}
## Checks that two `ptr` variables refer to the same item.
proc `==`*[T: proc | iterator](x, y: T): bool {.magic: "EqProc", noSideEffect.}
## Checks that two `proc` variables refer to the same procedure.
proc `<=`*[Enum: enum](x, y: Enum): bool {.magic: "LeEnum", noSideEffect.}
proc `<=`*(x, y: string): bool {.magic: "LeStr", noSideEffect.} =
## Compares two strings and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
runnableExamples:
let
a = "abc"
b = "abd"
c = "ZZZ"
assert a <= b
assert a <= a
assert not (a <= c)
proc `<=`*(x, y: char): bool {.magic: "LeCh", noSideEffect.} =
## Compares two chars and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
runnableExamples:
let
a = 'a'
b = 'b'
c = 'Z'
assert a <= b
assert a <= a
assert not (a <= c)
proc `<=`*[T](x, y: set[T]): bool {.magic: "LeSet", noSideEffect.} =
## Returns true if `x` is a subset of `y`.
##
## A subset `x` has all of its members in `y` and `y` doesn't necessarily
## have more members than `x`. That is, `x` can be equal to `y`.
runnableExamples:
let
a = {3, 5}
b = {1, 3, 5, 7}
c = {2}
assert a <= b
assert a <= a
assert not (a <= c)
proc `<=`*(x, y: bool): bool {.magic: "LeB", noSideEffect.}
proc `<=`*[T](x, y: ref T): bool {.magic: "LePtr", noSideEffect.}
proc `<=`*(x, y: pointer): bool {.magic: "LePtr", noSideEffect.}
proc `<`*[Enum: enum](x, y: Enum): bool {.magic: "LtEnum", noSideEffect.}
proc `<`*(x, y: string): bool {.magic: "LtStr", noSideEffect.} =
## Compares two strings and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
runnableExamples:
let
a = "abc"
b = "abd"
c = "ZZZ"
assert a < b
assert not (a < a)
assert not (a < c)
proc `<`*(x, y: char): bool {.magic: "LtCh", noSideEffect.} =
## Compares two chars and returns true if `x` is lexicographically
## before `y` (uppercase letters come before lowercase letters).
runnableExamples:
let
a = 'a'
b = 'b'
c = 'Z'
assert a < b
assert not (a < a)
assert not (a < c)
proc `<`*[T](x, y: set[T]): bool {.magic: "LtSet", noSideEffect.} =
## Returns true if `x` is a strict or proper subset of `y`.
##
## A strict or proper subset `x` has all of its members in `y` but `y` has
## more elements than `y`.
runnableExamples:
let
a = {3, 5}
b = {1, 3, 5, 7}
c = {2}
assert a < b
assert not (a < a)
assert not (a < c)
proc `<`*(x, y: bool): bool {.magic: "LtB", noSideEffect.}
proc `<`*[T](x, y: ref T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*[T](x, y: ptr T): bool {.magic: "LtPtr", noSideEffect.}
proc `<`*(x, y: pointer): bool {.magic: "LtPtr", noSideEffect.}
when not defined(nimHasCallsitePragma):
{.pragma: callsite.}
template `!=`*(x, y: untyped): untyped {.callsite.} =
## Unequals operator. This is a shorthand for `not (x == y)`.
not (x == y)
template `>=`*(x, y: untyped): untyped {.callsite.} =
## "is greater or equals" operator. This is the same as `y <= x`.
y <= x
template `>`*(x, y: untyped): untyped {.callsite.} =
## "is greater" operator. This is the same as `y < x`.
y < x
proc `==`*(x, y: int): bool {.magic: "EqI", noSideEffect.}
## Compares two integers for equality.
proc `==`*(x, y: int8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: int64): bool {.magic: "EqI", noSideEffect.}
proc `<=`*(x, y: int): bool {.magic: "LeI", noSideEffect.}
## Returns true if `x` is less than or equal to `y`.
proc `<=`*(x, y: int8): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int16): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int32): bool {.magic: "LeI", noSideEffect.}
proc `<=`*(x, y: int64): bool {.magic: "LeI", noSideEffect.}
proc `<`*(x, y: int): bool {.magic: "LtI", noSideEffect.}
## Returns true if `x` is less than `y`.
proc `<`*(x, y: int8): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int16): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int32): bool {.magic: "LtI", noSideEffect.}
proc `<`*(x, y: int64): bool {.magic: "LtI", noSideEffect.}
proc `<=`*(x, y: uint): bool {.magic: "LeU", noSideEffect.}
## Returns true if `x <= y`.
proc `<=`*(x, y: uint8): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint16): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint32): bool {.magic: "LeU", noSideEffect.}
proc `<=`*(x, y: uint64): bool {.magic: "LeU", noSideEffect.}
proc `<`*(x, y: uint): bool {.magic: "LtU", noSideEffect.}
## Returns true if `x < y`.
proc `<`*(x, y: uint8): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint16): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint32): bool {.magic: "LtU", noSideEffect.}
proc `<`*(x, y: uint64): bool {.magic: "LtU", noSideEffect.}
proc `<=%`*(x, y: int): bool {.inline.} =
## Treats `x` and `y` as unsigned and compares them.
## Returns true if `unsigned(x) <= unsigned(y)`.
cast[uint](x) <= cast[uint](y)
proc `<=%`*(x, y: int8): bool {.inline.} = cast[uint8](x) <= cast[uint8](y)
proc `<=%`*(x, y: int16): bool {.inline.} = cast[uint16](x) <= cast[uint16](y)
proc `<=%`*(x, y: int32): bool {.inline.} = cast[uint32](x) <= cast[uint32](y)
proc `<=%`*(x, y: int64): bool {.inline.} = cast[uint64](x) <= cast[uint64](y)
proc `<%`*(x, y: int): bool {.inline.} =
## Treats `x` and `y` as unsigned and compares them.
## Returns true if `unsigned(x) < unsigned(y)`.
cast[uint](x) < cast[uint](y)
proc `<%`*(x, y: int8): bool {.inline.} = cast[uint8](x) < cast[uint8](y)
proc `<%`*(x, y: int16): bool {.inline.} = cast[uint16](x) < cast[uint16](y)
proc `<%`*(x, y: int32): bool {.inline.} = cast[uint32](x) < cast[uint32](y)
proc `<%`*(x, y: int64): bool {.inline.} = cast[uint64](x) < cast[uint64](y)
template `>=%`*(x, y: untyped): untyped = y <=% x
## Treats `x` and `y` as unsigned and compares them.
## Returns true if `unsigned(x) >= unsigned(y)`.
template `>%`*(x, y: untyped): untyped = y <% x
## Treats `x` and `y` as unsigned and compares them.
## Returns true if `unsigned(x) > unsigned(y)`.
proc `==`*(x, y: uint): bool {.magic: "EqI", noSideEffect.}
## Compares two unsigned integers for equality.
proc `==`*(x, y: uint8): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint16): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint32): bool {.magic: "EqI", noSideEffect.}
proc `==`*(x, y: uint64): bool {.magic: "EqI", noSideEffect.}
proc `<=`*(x, y: float32): bool {.magic: "LeF64", noSideEffect.}
proc `<=`*(x, y: float): bool {.magic: "LeF64", noSideEffect.}
proc `<`*(x, y: float32): bool {.magic: "LtF64", noSideEffect.}
proc `<`*(x, y: float): bool {.magic: "LtF64", noSideEffect.}
proc `==`*(x, y: float32): bool {.magic: "EqF64", noSideEffect.}
proc `==`*(x, y: float): bool {.magic: "EqF64", noSideEffect.}
{.push stackTrace: off.}
proc min*(x, y: int): int {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int8): int8 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int16): int16 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int32): int32 {.magic: "MinI", noSideEffect.} =
if x <= y: x else: y
proc min*(x, y: int64): int64 {.magic: "MinI", noSideEffect.} =
## The minimum value of two integers.
if x <= y: x else: y
proc min*(x, y: float32): float32 {.noSideEffect, inline.} =
if x <= y or y != y: x else: y
proc min*(x, y: float64): float64 {.noSideEffect, inline.} =
if x <= y or y != y: x else: y
proc min*[T: not SomeFloat](x, y: T): T {.inline.} =
## Generic minimum operator of 2 values based on `<=`.
if x <= y: x else: y
proc max*(x, y: int): int {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int8): int8 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int16): int16 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int32): int32 {.magic: "MaxI", noSideEffect.} =
if y <= x: x else: y
proc max*(x, y: int64): int64 {.magic: "MaxI", noSideEffect.} =
## The maximum value of two integers.
if y <= x: x else: y
proc max*(x, y: float32): float32 {.noSideEffect, inline.} =
if y <= x or y != y: x else: y
proc max*(x, y: float64): float64 {.noSideEffect, inline.} =
if y <= x or y != y: x else: y
proc max*[T: not SomeFloat](x, y: T): T {.inline.} =
## Generic maximum operator of 2 values based on `<=`.
if y <= x: x else: y
proc min*[T](x: openArray[T]): T =
## The minimum value of `x`. `T` needs to have a `<` operator.
result = x[0]
for i in 1..high(x):
if x[i] < result: result = x[i]
proc max*[T](x: openArray[T]): T =
## The maximum value of `x`. `T` needs to have a `<` operator.
result = x[0]
for i in 1..high(x):
if result < x[i]: result = x[i]
{.pop.} # stackTrace: off
proc clamp*[T](x, a, b: T): T =
## Limits the value `x` within the interval \[a, b].
## This proc is equivalent to but faster than `max(a, min(b, x))`.
##
## .. warning:: `a <= b` is assumed and will not be checked (currently).
##
## **See also:**
## `math.clamp` for a version that takes a `Slice[T]` instead.
runnableExamples:
assert (1.4).clamp(0.0, 1.0) == 1.0
assert (0.5).clamp(0.0, 1.0) == 0.5
assert 4.clamp(1, 3) == max(1, min(3, 4))
if x < a: return a
if x > b: return b
return x
proc `==`*[I, T](x, y: array[I, T]): bool =
for f in low(x)..high(x):
if x[f] != y[f]:
return
result = true
proc `==`*[T](x, y: openArray[T]): bool =
if x.len != y.len:
return false
for f in low(x)..high(x):
if x[f] != y[f]:
return false
result = true
proc `==`*[T](x, y: seq[T]): bool {.noSideEffect.} =
## Generic equals operator for sequences: relies on a equals operator for
## the element type `T`.
when nimvm:
if x.len == 0 and y.len == 0:
return true
else:
when not defined(js):
proc seqToPtr[T](x: seq[T]): pointer {.inline, noSideEffect.} =
when defined(nimSeqsV2):
result = cast[NimSeqV2[T]](x).p
else:
result = cast[pointer](x)
if seqToPtr(x) == seqToPtr(y):
return true
else:
var sameObject = false
{.emit: """`sameObject` = `x` === `y`;""".}
if sameObject: return true
if x.len != y.len:
return false
for i in 0..x.len-1:
if x[i] != y[i]:
return false
return true
|