1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#
#
# Nim's Runtime Library
# (c) Copyright 2020 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
#[
A Cycle breaker for Nim
-----------------------
Instead of "collecting" cycles with all of its pitfalls we will break cycles.
We exploit that every 'ref' can be 'nil' for this and so get away without
a distinction between weak and strong pointers. The required runtime
mechanisms are the same though: We need to be able to traverse the graph.
This design has the tremendous benefit that it doesn't require a dedicated
'rawDispose' operation and that it plays well with Nim's cost model.
The cost of freeing a subgraph with cycles is 2 * N rather than N, that's all.
Cycles do not have to be prepared via .acyclic, there are not multiple
pointless traversals, only a single proc, `breakCycles` is exposed as a
separate module.
Algorithm
---------
We traverse the graph and notice the nodes we've already traversed. If we
marked the node already, we set the pointer that leads to this node to 'nil'
and decrement the reference count of the cell we pointed at.
We notice that multiple paths to the same object do not mean
we found a cycle, it only means the node is shared.
a -------> b <----- c
| ^ ^
+----------+ |
| |
+-------------------+
If we simply remove all links to already processed nodes we end up with:
a -------> b c
| ^
+ |
| |
+-------------------+
That seems acceptable, no leak is produced. This implies that the standard
depth-first traversal suffices.
]#
include cellseqs_v2
const
colGreen = 0b000
colYellow = 0b001
colRed = 0b010
colorMask = 0b011
type
TraceProc = proc (p, env: pointer) {.nimcall, benign.}
DisposeProc = proc (p: pointer) {.nimcall, benign.}
template color(c): untyped = c.rc and colorMask
template setColor(c, col) =
c.rc = c.rc and not colorMask or col
proc nimIncRefCyclic(p: pointer; cyclic: bool) {.compilerRtl, inl.} =
let h = head(p)
inc h.rc, rcIncrement
proc nimMarkCyclic(p: pointer) {.compilerRtl, inl.} = discard
type
GcEnv = object
traceStack: CellSeq[ptr pointer]
proc trace(p: pointer; desc: PNimTypeV2; j: var GcEnv) {.inline.} =
when false:
cprintf("[Trace] desc: %p %p\n", desc, p)
cprintf("[Trace] trace: %p\n", desc.traceImpl)
if desc.traceImpl != nil:
cast[TraceProc](desc.traceImpl)(p, addr(j))
proc nimTraceRef(q: pointer; desc: PNimTypeV2; env: pointer) {.compilerRtl.} =
let p = cast[ptr pointer](q)
when traceCollector:
cprintf("[Trace] raw: %p\n", p)
cprintf("[Trace] deref: %p\n", p[])
if p[] != nil:
var j = cast[ptr GcEnv](env)
j.traceStack.add(p, desc)
proc nimTraceRefDyn(q: pointer; env: pointer) {.compilerRtl.} =
let p = cast[ptr pointer](q)
when traceCollector:
cprintf("[TraceDyn] raw: %p\n", p)
cprintf("[TraceDyn] deref: %p\n", p[])
if p[] != nil:
var j = cast[ptr GcEnv](env)
j.traceStack.add(p, cast[ptr PNimTypeV2](p[])[])
var markerGeneration: int
proc breakCycles(s: Cell; desc: PNimTypeV2) =
let markerColor = if (markerGeneration and 1) == 0: colRed
else: colYellow
atomicInc markerGeneration
when traceCollector:
cprintf("[BreakCycles] starting: %p %s RC %ld trace proc %p\n",
s, desc.name, s.rc shr rcShift, desc.traceImpl)
var j: GcEnv
init j.traceStack
s.setColor markerColor
trace(s +! sizeof(RefHeader), desc, j)
while j.traceStack.len > 0:
let (u, desc) = j.traceStack.pop()
let p = u[]
let t = head(p)
if t.color != markerColor:
t.setColor markerColor
trace(p, desc, j)
when traceCollector:
cprintf("[BreakCycles] followed: %p RC %ld\n", t, t.rc shr rcShift)
else:
if (t.rc shr rcShift) > 0:
dec t.rc, rcIncrement
# mark as a link that the produced destructor does not have to follow:
u[] = nil
when traceCollector:
cprintf("[BreakCycles] niled out: %p RC %ld\n", t, t.rc shr rcShift)
else:
# anyhow as a link that the produced destructor does not have to follow:
u[] = nil
when traceCollector:
cprintf("[Bug] %p %s RC %ld\n", t, desc.name, t.rc shr rcShift)
deinit j.traceStack
proc thinout*[T](x: ref T) {.inline.} =
## turn the subgraph starting with `x` into its spanning tree by
## `nil`'ing out any pointers that would harm the spanning tree
## structure. Any back pointers that introduced cycles
## and thus would keep the graph from being freed are `nil`'ed.
## This is a form of cycle collection that works well with Nim's ARC
## and its associated cost model.
proc getDynamicTypeInfo[T](x: T): PNimTypeV2 {.magic: "GetTypeInfoV2", noSideEffect.}
breakCycles(head(cast[pointer](x)), getDynamicTypeInfo(x[]))
proc thinout*[T: proc](x: T) {.inline.} =
proc rawEnv[T: proc](x: T): pointer {.noSideEffect, inline.} =
{.emit: """
`result` = `x`.ClE_0;
""".}
let p = rawEnv(x)
breakCycles(head(p), cast[ptr PNimTypeV2](p)[])
proc nimDecRefIsLastCyclicDyn(p: pointer): bool {.compilerRtl, inl.} =
if p != nil:
var cell = head(p)
if (cell.rc and not rcMask) == 0:
result = true
#cprintf("[DESTROY] %p\n", p)
else:
dec cell.rc, rcIncrement
# According to Lins it's correct to do nothing else here.
#cprintf("[DeCREF] %p\n", p)
proc nimDecRefIsLastCyclicStatic(p: pointer; desc: PNimTypeV2): bool {.compilerRtl, inl.} =
if p != nil:
var cell = head(p)
if (cell.rc and not rcMask) == 0:
result = true
#cprintf("[DESTROY] %p %s\n", p, desc.name)
else:
dec cell.rc, rcIncrement
#cprintf("[DeCREF] %p %s %ld\n", p, desc.name, cell.rc)
|