1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#
#
# Nim's Runtime Library
# (c) Copyright 2018 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# Compilerprocs for strings that do not depend on the string implementation.
import std/private/digitsutils
proc cmpStrings(a, b: string): int {.inline, compilerproc.} =
let alen = a.len
let blen = b.len
let minlen = min(alen, blen)
if minlen > 0:
result = c_memcmp(unsafeAddr a[0], unsafeAddr b[0], cast[csize_t](minlen)).int
if result == 0:
result = alen - blen
else:
result = alen - blen
proc leStrings(a, b: string): bool {.inline, compilerproc.} =
# required by upcoming backends (NIR).
cmpStrings(a, b) <= 0
proc ltStrings(a, b: string): bool {.inline, compilerproc.} =
# required by upcoming backends (NIR).
cmpStrings(a, b) < 0
proc eqStrings(a, b: string): bool {.inline, compilerproc.} =
let alen = a.len
let blen = b.len
if alen == blen:
if alen == 0: return true
return equalMem(unsafeAddr(a[0]), unsafeAddr(b[0]), alen)
proc hashString(s: string): int {.compilerproc.} =
# the compiler needs exactly the same hash function!
# this used to be used for efficient generation of string case statements
var h = 0'u
for i in 0..len(s)-1:
h = h + uint(s[i])
h = h + h shl 10
h = h xor (h shr 6)
h = h + h shl 3
h = h xor (h shr 11)
h = h + h shl 15
result = cast[int](h)
proc eqCstrings(a, b: cstring): bool {.inline, compilerproc.} =
if pointer(a) == pointer(b): result = true
elif a.isNil or b.isNil: result = false
else: result = c_strcmp(a, b) == 0
proc hashCstring(s: cstring): int {.compilerproc.} =
# the compiler needs exactly the same hash function!
# this used to be used for efficient generation of cstring case statements
if s.isNil: return 0
var h : uint = 0
var i = 0
while true:
let c = s[i]
if c == '\0': break
h = h + uint(c)
h = h + h shl 10
h = h xor (h shr 6)
inc i
h = h + h shl 3
h = h xor (h shr 11)
h = h + h shl 15
result = cast[int](h)
proc c_strtod(buf: cstring, endptr: ptr cstring): float64 {.
importc: "strtod", header: "<stdlib.h>", noSideEffect.}
const
IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'}
powtens = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22]
{.push staticBoundChecks: off.}
proc nimParseBiggestFloat(s: openArray[char], number: var BiggestFloat,
): int {.compilerproc.} =
# This routine attempt to parse float that can parsed quickly.
# i.e. whose integer part can fit inside a 53bits integer.
# their real exponent must also be <= 22. If the float doesn't follow
# these restrictions, transform the float into this form:
# INTEGER * 10 ^ exponent and leave the work to standard `strtod()`.
# This avoid the problems of decimal character portability.
# see: http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
var
i = 0
sign = 1.0
kdigits, fdigits = 0
exponent = 0
integer = uint64(0)
fracExponent = 0
expSign = 1
firstDigit = -1
hasSign = false
# Sign?
if i < s.len and (s[i] == '+' or s[i] == '-'):
hasSign = true
if s[i] == '-':
sign = -1.0
inc(i)
# NaN?
if i+2 < s.len and (s[i] == 'N' or s[i] == 'n'):
if s[i+1] == 'A' or s[i+1] == 'a':
if s[i+2] == 'N' or s[i+2] == 'n':
if i+3 >= s.len or s[i+3] notin IdentChars:
number = NaN
return i+3
return 0
# Inf?
if i+2 < s.len and (s[i] == 'I' or s[i] == 'i'):
if s[i+1] == 'N' or s[i+1] == 'n':
if s[i+2] == 'F' or s[i+2] == 'f':
if i+3 >= s.len or s[i+3] notin IdentChars:
number = Inf*sign
return i+3
return 0
if i < s.len and s[i] in {'0'..'9'}:
firstDigit = (s[i].ord - '0'.ord)
# Integer part?
while i < s.len and s[i] in {'0'..'9'}:
inc(kdigits)
integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
inc(i)
while i < s.len and s[i] == '_': inc(i)
# Fractional part?
if i < s.len and s[i] == '.':
inc(i)
# if no integer part, Skip leading zeros
if kdigits <= 0:
while i < s.len and s[i] == '0':
inc(fracExponent)
inc(i)
while i < s.len and s[i] == '_': inc(i)
if firstDigit == -1 and i < s.len and s[i] in {'0'..'9'}:
firstDigit = (s[i].ord - '0'.ord)
# get fractional part
while i < s.len and s[i] in {'0'..'9'}:
inc(fdigits)
inc(fracExponent)
integer = integer * 10'u64 + (s[i].ord - '0'.ord).uint64
inc(i)
while i < s.len and s[i] == '_': inc(i)
# if has no digits: return error
if kdigits + fdigits <= 0 and
(i == 0 or # no char consumed (empty string).
(i == 1 and hasSign)): # or only '+' or '-
return 0
if i+1 < s.len and s[i] in {'e', 'E'}:
inc(i)
if s[i] == '+' or s[i] == '-':
if s[i] == '-':
expSign = -1
inc(i)
if s[i] notin {'0'..'9'}:
return 0
while i < s.len and s[i] in {'0'..'9'}:
exponent = exponent * 10 + (ord(s[i]) - ord('0'))
inc(i)
while i < s.len and s[i] == '_': inc(i) # underscores are allowed and ignored
var realExponent = expSign*exponent - fracExponent
let expNegative = realExponent < 0
var absExponent = abs(realExponent)
# if exponent greater than can be represented: +/- zero or infinity
if absExponent > 999:
if integer == 0:
number = 0.0
elif expNegative:
number = 0.0*sign
else:
number = Inf*sign
return i
# if integer is representable in 53 bits: fast path
# max fast path integer is 1<<53 - 1 or 8999999999999999 (16 digits)
let digits = kdigits + fdigits
if digits <= 15 or (digits <= 16 and firstDigit <= 8):
# max float power of ten with set bits above the 53th bit is 10^22
if absExponent <= 22:
if expNegative:
number = sign * integer.float / powtens[absExponent]
else:
number = sign * integer.float * powtens[absExponent]
return i
# if exponent is greater try to fit extra exponent above 22 by multiplying
# integer part is there is space left.
let slop = 15 - kdigits - fdigits
if absExponent <= 22 + slop and not expNegative:
number = sign * integer.float * powtens[slop] * powtens[absExponent-slop]
return i
# if failed: slow path with strtod.
var t: array[500, char] # flaviu says: 325 is the longest reasonable literal
var ti = 0
let maxlen = t.high - "e+000".len # reserve enough space for exponent
let endPos = i
result = endPos
i = 0
# re-parse without error checking, any error should be handled by the code above.
if i < endPos and s[i] == '.': i.inc
while i < endPos and s[i] in {'0'..'9','+','-'}:
if ti < maxlen:
t[ti] = s[i]; inc(ti)
inc(i)
while i < endPos and s[i] in {'.', '_'}: # skip underscore and decimal point
inc(i)
# insert exponent
t[ti] = 'E'
inc(ti)
t[ti] = if expNegative: '-' else: '+'
inc(ti, 4)
# insert adjusted exponent
t[ti-1] = ('0'.ord + absExponent mod 10).char
absExponent = absExponent div 10
t[ti-2] = ('0'.ord + absExponent mod 10).char
absExponent = absExponent div 10
t[ti-3] = ('0'.ord + absExponent mod 10).char
number = c_strtod(cast[cstring](addr t), nil)
{.pop.} # staticBoundChecks
proc nimBoolToStr(x: bool): string {.compilerRtl.} =
return if x: "true" else: "false"
proc nimCharToStr(x: char): string {.compilerRtl.} =
result = newString(1)
result[0] = x
when defined(gcDestructors):
proc GC_getStatistics*(): string =
result = "[GC] total memory: "
result.addInt getTotalMem()
result.add "\n[GC] occupied memory: "
result.addInt getOccupiedMem()
result.add '\n'
#"[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
|