1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
discard """
action: "compile"
"""
# A vector space over a field F concept.
type VectorSpace*[F] = concept x, y, type V
vector_add(x, y) is V
scalar_mul(x, F) is V
dimension(V) is Natural
# Real numbers (here floats) form a vector space.
func vector_add*(v: float, w: float): float = v + w
func scalar_mul*(v: float, s: float): float = v * s
func dimension*(x: typedesc[float]): Natural = 1
# 2-tuples of real numbers form a vector space.
func vector_add*(v, w: (float, float)): (float, float) =
(vector_add(v[0], w[0]), vector_add(v[1], w[1]))
func scalar_mul*(v: (float, float), s: float): (float, float) =
(scalar_mul(v[0], s), scalar_mul(v[1], s))
func dimension*(x: typedesc[(float, float)]): Natural = 2
# Check concept requirements.
assert float is VectorSpace
assert (float, float) is VectorSpace
# Commutivity axiom for vector spaces over the same field.
func axiom_commutivity*[F](u, v: VectorSpace[F]): bool =
vector_add(u, v) == vector_add(v, u)
# This is okay.
assert axiom_commutivity(2.2, 3.3)
# This is not.
assert axiom_commutivity((2.2, 3.3), (4.4, 5.5))
|