1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
discard """
output: '''Match failed: spam
Match failed: ham'''
joinable: false
"""
# bug #6220
import nre
import options
import strutils except isAlpha, isLower, isUpper, isSpace
from unicode import isAlpha, isLower, isUpper, isTitle, isWhiteSpace
import os
const debugLex = false
template debug(enable: bool, text: string): typed =
when enable:
echo(text)
type
Parser[N, T] = proc(text: T, start: int, nodes: var seq[Node[N]]): int {.closure.}
RuleObj[N, T] = object
parser: Parser[N, T]
kind: N
Rule[N, T] = ref RuleObj[N, T]
NodeKind = enum
terminal,
nonterminal
Node*[N] = object of RootObj
# Uncomment the following lines and the compiler crashes
# case nodeKind: NodeKind
# of nonterminal:
# kids: Node[N]
# of terminal:
# discard
start*: int
length*: int
kind*: N
NonTerminal[N] = object of Node
children: seq[Node[N]]
proc newRule[N, T](parser: Parser, kind: N): Rule[N, T] =
new(result)
result.parser = parser
result.kind = kind
proc newRule[N, T](kind: N): Rule[N, T] =
new(result)
result.kind = kind
proc initNode[N](start: int, length: int, kind: N): Node[N] =
result.start = start
result.length = length
result.kind = kind
proc initNode[N](start: int, length: int, children: seq[Node[N]], kind: N): NonTerminal[N] =
result.start = start
result.length = length
result.kind = kind
result.children = children
proc substr[T](text: T, first, last: int): T =
text[first .. last]
proc continuesWith[N](text: seq[Node[N]], subtext: seq[N], start: Natural): bool =
let length = len(text)
var pos = 0
while pos < len(subtext):
let textpos = start + pos
if textpos == len(text):
return false
if text[textpos].kind != subtext[pos].kind:
return false
pos+=1
return true
proc render*[N, T](text: T, nodes: seq[Node[N]]): string =
## Uses a sequence of Nodes to render a given text string
result = ""
for node in nodes:
result.add("<" & node.value(text) & ">")
proc render*[N, T](rule: Rule[N, T], text: string): string =
## Uses a rule to render a given text string
render(text, rule.parse(text))
proc render*[N, T](text: T, nodes: seq[Node[N]], source: string): string =
result = ""
for node in nodes:
result.add("[" & node.value(text, source) & "]")
proc render*[N, T, X](rule: Rule[N, T], text: seq[Node[X]], source: string): string =
## Uses a rule to render a given series of nodes, providing the source string
text.render(rule.parse(text, source = source), source)
proc annotate*[N, T](node: Node[N], text: T): string =
result = "<" & node.value(text) & ":" & $node.kind & ">"
proc annotate*[N, T](nodes: seq[Node[N]], text: T): string =
result = ""
for node in nodes:
result.add(node.annotate(text))
proc annotate*[N, T](rule: Rule[N, T], text: T): string =
annotate(rule.parse(text), text)
proc value*[N, T](node: Node[N], text: T): string =
result = $text.substr(node.start, node.start + node.length - 1)
proc value*[N, X](node: Node[N], text: seq[Node[X]], source: string): string =
result = ""
for n in node.start ..< node.start + node.length:
result &= text[n].annotate(source)
proc parse*[N, T](rule: Rule[N, T], text: T, start = 0, source: string = ""): seq[Node[N]] =
result = newSeq[Node[N]]()
debug(debugLex, "Parsing: " & $text)
let length = rule.parser(text, start, result)
when T is string:
if length == -1:
echo("Match failed: " & $text)
result = @[]
elif length == len(text):
debug(debugLex, "Matched: " & $text & " => " & $len(result) & " tokens: " & text.render(result))
else:
echo("Matched first " & $length & " symbols: " & $text & " => " & $len(result) & " tokens: " & text.render(result))
else:
if length == -1:
echo("Match failed: " & $text)
result = @[]
elif length == len(text):
debug(debugLex, "Matched: " & $text & " => " & $len(result) & " tokens: " & text.render(result, source))
else:
echo("Matched first " & $length & " symbols: " & $text & " => " & $len(result) & " tokens: " & text.render(result, source))
proc literal*[N, T, P](pattern: P, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
if start == len(text):
return -1
doAssert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
when P is string or P is seq[N]:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start..start+len(pattern)-1])
if text.continuesWith(pattern, start):
let node = initNode(start, len(pattern), kind)
nodes.add(node)
debug(debugLex, "Literal: matched <" & $text[start ..< start+node.length] & ":" & $node.length & ">" )
return node.length
elif P is char:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start])
if text[start] == pattern:
let node = initNode(start, 1, kind)
nodes.add(node)
return 1
else:
debug(debugLex, "Literal[" & $kind & "]: testing " & $pattern & " at " & $start & ": " & $text[start])
if text[start].kind == pattern:
let node = initNode(start, 1, kind)
nodes.add(node)
return 1
return -1
result = newRule[N, T](parser, kind)
proc token[N, T](pattern: T, kind: N): Rule[N, T] =
when T is not string:
{.fatal: "Token is only supported for strings".}
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
debug(debugLex, "Token[" & $kind & "]: testing " & pattern & " at " & $start)
if start == len(text):
return -1
doAssert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
let m = text.match(re(pattern), start)
if m.isSome:
let node = initNode(start, len(m.get.match), kind)
nodes.add(node)
result = node.length
debug(debugLex, "Token: matched <" & text[start ..< start+node.length] & ":" & $node.length & ">" )
else:
result = -1
result = newRule[N, T](parser, kind)
proc chartest[N, T, S](testfunc: proc(s: S): bool, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
if start == len(text):
return -1
doAssert(len(text)>start, "Attempting to match at $#, string length is $# " % [$start, $len(text)])
if testfunc(text[start]):
nodes.add(initNode(start, 1, kind))
result = 1
else:
result = -1
result = newRule[N, T](parser, kind)
proc any*[N, T, S](symbols: T, kind: N): Rule[N, T] =
let test = proc(s: S): bool =
when S is string:
debug(debugLex, "Any[" & $kind & "]: testing for " & symbols.replace("\n", "\\n").replace("\r", "\\r"))
else:
debug(debugLex, "Any[" & $kind & "]: testing for " & $symbols)
result = s in symbols
result = chartest[N, T, S](test, kind)
proc ignore*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
result = newRule[N, T](parser, rule.kind)
proc combine*[N, T](rule: Rule[N, T], kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
nodes.add(initNode(start, result, kind))
result = newRule[N, T](parser, kind)
proc build*[N, T](rule: Rule[N, T], kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
result = rule.parser(text, start, mynodes)
let nonTerminal = initNode(start, result, mynodes, kind)
nodes.add(nonTerminal)
result = newRule[N, T](parser, kind)
proc fail*[N, T](message: string, kind: N): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let lineno = countLines(text[0..start])
var startline = start
var endline = start
while startline>0:
if text[startline] in NewLines:
break
startline-=1
while endline < len(text):
if text[endline] in NewLines:
break
endline+=1
let charno = start-startline
echo text.substr(startline, endline)
echo ' '.repeat(max(charno,0)) & '^'
raise newException(ValueError, "Position: " & $start & " Line: " & $lineno & ", Symbol: " & $charno & ": " & message)
result = newRule[N, T](parser, kind)
proc `+`*[N, T](left: Rule[N, T], right: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
doAssert(not isNil(left.parser), "Left hand side parser is nil")
let leftlength = left.parser(text, start, mynodes)
if leftlength == -1:
return leftlength
doAssert(not isNil(right.parser), "Right hand side parser is nil")
let rightlength = right.parser(text, start+leftlength, mynodes)
if rightlength == -1:
return rightlength
result = leftlength + rightlength
nodes.add(mynodes)
result = newRule[N, T](parser, left.kind)
proc `/`*[N, T](left: Rule[N, T], right: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
doAssert(not isNil(left.parser), "Left hand side of / is not fully defined")
let leftlength = left.parser(text, start, mynodes)
if leftlength != -1:
nodes.add(mynodes)
return leftlength
mynodes = newSeq[Node[N]]()
doAssert(not isNil(right.parser), "Right hand side of / is not fully defined")
let rightlength = right.parser(text, start, mynodes)
if rightlength == -1:
return rightlength
nodes.add(mynodes)
return rightlength
result = newRule[N, T](parser, left.kind)
proc `?`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let success = rule.parser(text, start, nodes)
return if success != -1: success else: 0
result = newRule[N, T](parser, rule.kind)
proc `+`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var success = rule.parser(text, start, nodes)
if success == -1:
return success
var total = 0
while success != -1 and start+total < len(text):
total += success
success = rule.parser(text, start+total, nodes)
return total
result = newRule[N, T](parser, rule.kind)
proc `*`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
let success = (+rule).parser(text, start, nodes)
return if success != -1: success else: 0
result = newRule[N, T](parser, rule.kind)
#Note: this consumes - for zero-width lookahead see !
proc `^`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let success = rule.parser(text, start, mynodes)
return if success == -1: 1 else: -1
result = newRule[N, T](parser, rule.kind)
proc `*`*[N, T](repetitions: int, rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
var total = 0
for i in 0..<repetitions:
let success = rule.parser(text, start+total, mynodes)
if success == -1:
return success
else:
total += success
nodes.add(mynodes)
return total
result = newRule[N, T](parser, rule.kind)
# Positive zero-width lookahead
proc `&`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let success = rule.parser(text, start, mynodes)
return if success != -1: 0 else: -1
result = newRule[N, T](parser, rule.kind)
# Negative zero-width lookahead
proc `!`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
let failure = rule.parser(text, start, mynodes)
return if failure == -1: 0 else: -1
result = newRule[N, T](parser, rule.kind)
proc `/`*[N, T](rule: Rule[N, T]): Rule[N, T] =
let parser = proc (text: T, start: int, nodes: var seq[Node[N]]): int =
var mynodes = newSeq[Node[N]]()
var length = 0
var success = rule.parser(text, start+length, mynodes)
while success == -1 and start+length < len(text):
length += 1
success = rule.parser(text, start+length, mynodes)
if start+length >= len(text):
result = -1
else:
nodes.add(initNode(start, length, rule.kind))
nodes.add(mynodes)
result = length + success
result = newRule[N, T](parser, rule.kind)
proc `->`*(rule: Rule, production: Rule) =
doAssert(not isnil(production.parser), "Right hand side of -> is nil - has the rule been defined yet?")
rule.parser = production.parser
template grammar*[K](Kind, Text, Symbol: typedesc; default: K, code: untyped): typed {.hint[XDeclaredButNotUsed]: off.} =
proc newRule(): Rule[Kind, Text] {.inject.} = newRule[Kind, Text](default)
proc chartest(testfunc: proc(c: Symbol): bool): Rule[Kind, Text] {.inject.} = chartest[Kind, Text, Symbol](testfunc, default)
proc literal[P](pattern: P, kind: K): Rule[Kind, Text] {.inject.} = literal[Kind, Text, P](pattern, kind)
proc literal[P](pattern: P): Rule[Kind, Text] {.inject.} = literal[Kind, Text, P](pattern, default)
when Text is string:
proc token(pattern: string): Rule[Kind, Text] {.inject.} = token(pattern, default)
proc fail(message: string): Rule[Kind, Text] {.inject.} = fail[Kind, Text](message, default)
let alpha {.inject.} = chartest[Kind, Text, Symbol](isAlphaAscii, default)
let alphanumeric {.inject.}= chartest[Kind, Text, Symbol](isAlphaNumeric, default)
let digit {.inject.} = chartest[Kind, Text, Symbol](isDigit, default)
let lower {.inject.} = chartest[Kind, Text, Symbol](isLowerAscii, default)
let upper {.inject.} = chartest[Kind, Text, Symbol](isUpperAscii, default)
let isspace = proc (x: char): bool = x.isSpaceAscii and not (x in NewLines)
let space {.inject.} = chartest[Kind, Text, Symbol](isspace, default)
let isnewline = proc (x: char): bool = x in NewLines
let newline {.inject.} = chartest[Kind, Text, Symbol](isnewline, default)
let alphas {.inject.} = combine(+alpha, default)
let alphanumerics {.inject.} = combine(+alphanumeric, default)
let digits {.inject.} = combine(+digit, default)
let lowers {.inject.} = combine(+lower, default)
let uppers {.inject.} = combine(+upper, default)
let spaces {.inject.} = combine(+space, default)
let newlines {.inject.} = combine(+newline, default)
proc any(chars: Text): Rule[Kind, Text] {.inject.} = any[Kind, Text, Symbol](chars, default)
proc combine(rule: Rule[Kind, Text]): Rule[Kind, Text] {.inject.} = combine[Kind, Text](rule, default)
code
template grammar*[K](Kind: typedesc; default: K, code: untyped): typed {.hint[XDeclaredButNotUsed]: off.} =
grammar(Kind, string, char, default, code)
block:
type DummyKind = enum dkDefault
grammar(DummyKind, string, char, dkDefault):
let rule = token("h[a]+m") + ignore(token(r"\s+")) + (literal("eggs") / literal("beans"))
var text = "ham beans"
discard rule.parse(text)
var recursive = newRule()
recursive -> (literal("(") + recursive + literal(")")) / token(r"\d+")
for test in ["spam", "57", "(25)", "((25))"]:
discard recursive.parse(test)
let repeated = +literal("spam") + ?literal("ham") + *literal("salami")
for test in ["ham", "spam", "spamspamspam" , "spamham", "spamsalami", "spamsalamisalami"]:
discard repeated.parse(test)
|