1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
discard """
matrix: "--mm:orc; --mm:refc"
"""
# xxx also test on js
import std/genasts
import std/macros
from std/strformat import `&`
import std/assertions
import ./mgenast
proc main =
block:
macro bar(x0: static Foo, x1: Foo, x2: Foo, xignored: Foo): untyped =
let s0 = "not captured!"
let s1 = "not captured!"
let xignoredLocal = kfoo4
# newLit optional:
let x3 = newLit kfoo4
let x3b = kfoo4
result = genAstOpt({kDirtyTemplate}, s1=true, s2="asdf", x0, x1=x1, x2, x3, x3b):
doAssert not declared(xignored)
doAssert not declared(xignoredLocal)
(s1, s2, s0, x0, x1, x2, x3, x3b)
let s0 = "caller scope!"
doAssert bar(kfoo1, kfoo2, kfoo3, kfoo4) ==
(true, "asdf", "caller scope!", kfoo1, kfoo2, kfoo3, kfoo4, kfoo4)
block:
# doesn't have limitation mentioned in https://github.com/nim-lang/RFCs/issues/122#issue-401636535
macro abc(name: untyped): untyped =
result = genAst(name):
type name = object
abc(Bar)
doAssert Bar.default == Bar()
block:
# backticks parser limitations / ambiguities not are an issue with `genAst`:
# (#10326 #9745 are fixed but `quote do` still has underlying ambiguity issue
# with backticks)
type Foo = object
a: int
macro m1(): untyped =
# result = quote do: # Error: undeclared identifier: 'a1'
result = genAst:
template `a1=`(x: var Foo, val: int) =
x.a = val
m1()
var x0: Foo
x0.a1 = 10
doAssert x0 == Foo(a: 10)
block:
# avoids bug #7375
macro fun(b: static[bool], b2: bool): untyped =
result = newStmtList()
macro foo(c: bool): untyped =
var b = false
result = genAst(b, c):
fun(b, c)
foo(true)
block:
# avoids bug #7589
# since `==` works with genAst, the problem goes away
macro foo2(): untyped =
# result = quote do: # Error: '==' cannot be passed to a procvar
result = genAst:
`==`(3,4)
doAssert not foo2()
block:
# avoids bug #7726
# expressions such as `a.len` are just passed as arguments to `genAst`, and
# caller scope is not polluted with definitions such as `let b = newLit a.len`
macro foo(): untyped =
let a = @[1, 2, 3, 4, 5]
result = genAst(a, b = a.len): # shows 2 ways to get a.len
(a.len, b)
doAssert foo() == (5, 5)
block:
# avoids bug #9607
proc fun1(info:LineInfo): string = "bar1"
proc fun2(info:int): string = "bar2"
macro bar2(args: varargs[untyped]): untyped =
let info = args.lineInfoObj
let fun1 = bindSym"fun1" # optional; we can remove this and also the
# capture of fun1, as show in next example
result = genAst(info, fun1):
(fun1(info), fun2(info.line))
doAssert bar2() == ("bar1", "bar2")
macro bar3(args: varargs[untyped]): untyped =
let info = args.lineInfoObj
result = genAst(info):
(fun1(info), fun2(info.line))
doAssert bar3() == ("bar1", "bar2")
macro bar(args: varargs[untyped]): untyped =
let info = args.lineInfoObj
let fun1 = bindSym"fun1"
let fun2 = bindSym"fun2"
result = genAstOpt({kDirtyTemplate}, info):
(fun1(info), fun2(info.line))
doAssert bar() == ("bar1", "bar2")
block:
# example from bug #7889 works
# after changing method call syntax to regular call syntax; this is a
# limitation described in bug #7085
# note that `quote do` would also work after that change in this example.
doAssert bindme2() == kfoo1
doAssert bindme3() == kfoo1
doAssert not compiles(bindme4()) # correctly gives Error: undeclared identifier: 'myLocalPriv'
proc myLocalPriv2(): auto = kfoo2
doAssert bindme5UseExpose() == kfoo1
# example showing hijacking behavior when using `kDirtyTemplate`
doAssert bindme5UseExposeFalse() == kfoo2
# local `myLocalPriv2` hijacks symbol `mgenast.myLocalPriv2`. In most
# use cases this is probably not what macro writer intends as it's
# surprising; hence `kDirtyTemplate` is not the default.
when nimvm: # disabled because `newStringStream` is used
discard
else:
bindme6UseExpose()
bindme6UseExposeFalse()
block:
macro mbar(x3: Foo, x3b: static Foo): untyped =
var x1=kfoo3
var x2=newLit kfoo3
var x4=kfoo3
var xLocal=kfoo3
proc funLocal(): auto = kfoo4
result = genAst(x1, x2, x3, x4):
# local x1 overrides remote x1
when false:
# one advantage of using `kDirtyTemplate` is that these would hold:
doAssert not declared xLocal
doAssert not compiles(echo xLocal)
# however, even without it, we at least correctly generate CT error
# if trying to use un-captured symbol; this correctly gives:
# Error: internal error: environment misses: xLocal
echo xLocal
proc foo1(): auto =
# note that `funLocal` is captured implicitly, according to hygienic
# template rules; with `kDirtyTemplate` it would not unless
# captured in `genAst` capture list explicitly
(a0: xRemote, a1: x1, a2: x2, a3: x3, a4: x4, a5: funLocal())
return result
proc main()=
var xRemote=kfoo1
var x1=kfoo2
mbar(kfoo4, kfoo4)
doAssert foo1() == (a0: kfoo1, a1: kfoo3, a2: kfoo3, a3: kfoo4, a4: kfoo3, a5: kfoo4)
main()
block:
# With `kDirtyTemplate`, the example from #8220 works.
# See https://nim-lang.github.io/Nim/strformat.html#limitations for
# an explanation of why {.dirty.} is needed.
macro foo(): untyped =
result = genAstOpt({kDirtyTemplate}):
let bar = "Hello, World"
&"Let's interpolate {bar} in the string"
doAssert foo() == "Let's interpolate Hello, World in the string"
block: # nested application of genAst
macro createMacro(name, obj, field: untyped): untyped =
result = genAst(obj = newDotExpr(obj, field), lit = 10, name, field):
# can't reuse `result` here, would clash
macro name(arg: untyped): untyped =
genAst(arg2=arg): # somehow `arg2` rename is needed
(obj, astToStr(field), lit, arg2)
var x = @[1, 2, 3]
createMacro foo, x, len
doAssert (foo 20) == (3, "len", 10, 20)
block: # test with kNoNewLit
macro bar(): untyped =
let s1 = true
template boo(x): untyped =
fun(x)
result = genAstOpt({kNoNewLit}, s1=newLit(s1), s1b=s1): (s1, s1b)
doAssert bar() == (true, 1)
block: # sanity check: check passing `{}` also works
macro bar(): untyped =
result = genAstOpt({}, s1=true): s1
doAssert bar() == true
block: # test passing function and type symbols
proc z1(): auto = 41
type Z4 = type(1'i8)
macro bar(Z1: typedesc): untyped =
proc z2(): auto = 42
proc z3[T](a: T): auto = 43
let Z2 = genAst():
type(true)
let z4 = genAst():
proc myfun(): auto = 44
myfun
type Z3 = type(1'u8)
result = genAst(z4, Z1, Z2):
# z1, z2, z3, Z3, Z4 are captured automatically
# z1, z2, z3 can optionally be specified in capture list
(z1(), z2(), z3('a'), z4(), $Z1, $Z2, $Z3, $Z4)
type Z1 = type('c')
doAssert bar(Z1) == (41, 42, 43, 44, "char", "bool", "uint8", "int8")
block: # fix bug #11986
proc foo(): auto =
var s = { 'a', 'b' }
# var n = quote do: `s` # would print {97, 98}
var n = genAst(s): s
n.repr
static: doAssert foo() == "{'a', 'b'}"
block: # also from #11986
macro foo(): untyped =
var s = { 'a', 'b' }
# quote do:
# let t = `s`
# $typeof(t) # set[range 0..65535(int)]
genAst(s):
let t = s
$typeof(t)
doAssert foo() == "set[char]"
block:
macro foo(): untyped =
type Foo = object
template baz2(a: int): untyped = a*10
macro baz3(a: int): untyped = newLit 13
result = newStmtList()
result.add genAst(Foo, baz2, baz3) do: # shows you can pass types, templates etc
var x: Foo
$($typeof(x), baz2(3), baz3(4))
let ret = genAst() do: # shows you don't have to, since they're inject'd
var x: Foo
$($typeof(x), baz2(3), baz3(4))
doAssert foo() == """("Foo", 30, 13)"""
block: # illustrates how symbol visiblity can be controlled precisely using `mixin`
proc locafun1(): auto = "in locafun1 (caller scope)" # this will be used because of `mixin locafun1` => explicit hijacking is ok
proc locafun2(): auto = "in locafun2 (caller scope)" # this won't be used => no hijacking
proc locafun3(): auto = "in locafun3 (caller scope)"
doAssert mixinExample() == ("in locafun1 (caller scope)", "in locafun2", "in locafun3 (caller scope)")
static: main()
main()
|