File: semdata.nim

package info (click to toggle)
nim 2.2.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,951,164 kB
  • sloc: sh: 24,599; ansic: 1,771; python: 1,493; makefile: 1,013; sql: 298; asm: 141; xml: 13
file content (804 lines) | stat: -rw-r--r-- 31,730 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module contains the data structures for the semantic checking phase.

import std/[tables, intsets, sets, strutils]

when defined(nimPreviewSlimSystem):
  import std/assertions

import
  options, ast, msgs, idents, renderer,
  magicsys, vmdef, modulegraphs, lineinfos, pathutils, layeredtable,
  types, lowerings, trees, parampatterns

import ic / ic

type
  TOptionEntry* = object      # entries to put on a stack for pragma parsing
    options*: TOptions
    defaultCC*: TCallingConvention
    dynlib*: PLib
    notes*: TNoteKinds
    features*: set[Feature]
    otherPragmas*: PNode      # every pragma can be pushed
    warningAsErrors*: TNoteKinds

  POptionEntry* = ref TOptionEntry
  PProcCon* = ref TProcCon
  TProcCon* {.acyclic.} = object # procedure context; also used for top-level
                                 # statements
    owner*: PSym              # the symbol this context belongs to
    resultSym*: PSym          # the result symbol (if we are in a proc)
    nestedLoopCounter*: int   # whether we are in a loop or not
    nestedBlockCounter*: int  # whether we are in a block or not
    breakInLoop*: bool        # whether we are in a loop without block
    next*: PProcCon           # used for stacking procedure contexts
    mappingExists*: bool
    mapping*: Table[ItemId, PSym]
    caseContext*: seq[tuple[n: PNode, idx: int]]
    localBindStmts*: seq[PNode]

  TMatchedConcept* = object
    candidateType*: PType
    prev*: ptr TMatchedConcept
    depth*: int

  TInstantiationPair* = object
    genericSym*: PSym
    inst*: PInstantiation

  TExprFlag* = enum
    efLValue, efWantIterator, efWantIterable, efInTypeof,
    efNeedStatic,
      # Use this in contexts where a static value is mandatory
    efPreferStatic,
      # Use this in contexts where a static value could bring more
      # information, but it's not strictly mandatory. This may become
      # the default with implicit statics in the future.
    efPreferNilResult,
      # Use this if you want a certain result (e.g. static value),
      # but you don't want to trigger a hard error. For example,
      # you may be in position to supply a better error message
      # to the user.
    efWantStmt, efAllowStmt, efDetermineType, efExplain,
    efWantValue, efOperand, efNoSemCheck,
    efNoEvaluateGeneric, efInCall, efFromHlo, efNoSem2Check,
    efNoUndeclared, efIsDotCall, efCannotBeDotCall,
      # Use this if undeclared identifiers should not raise an error during
      # overload resolution.
    efTypeAllowed # typeAllowed will be called after
    efWantNoDefaults
    efIgnoreDefaults # var statements without initialization
    efAllowSymChoice # symchoice node should not be resolved

  TExprFlags* = set[TExprFlag]

  ImportMode* = enum
    importAll, importSet, importExcept
  ImportedModule* = object
    m*: PSym
    case mode*: ImportMode
    of importAll: discard
    of importSet:
      imported*: IntSet          # of PIdent.id
    of importExcept:
      exceptSet*: IntSet         # of PIdent.id

  PContext* = ref TContext
  TContext* = object of TPassContext # a context represents the module
                                     # that is currently being compiled
    enforceVoidContext*: PType
      # for `if cond: stmt else: foo`, `foo` will be evaluated under
      # enforceVoidContext != nil
    voidType*: PType # for typeof(stmt)
    module*: PSym              # the module sym belonging to the context
    currentScope*: PScope      # current scope
    moduleScope*: PScope       # scope for modules
    imports*: seq[ImportedModule] # scope for all imported symbols
    topLevelScope*: PScope     # scope for all top-level symbols
    p*: PProcCon               # procedure context
    intTypeCache*: array[-5..32, PType] # cache some common integer types
                                        # to avoid type allocations
    nilTypeCache*: PType
    matchedConcept*: ptr TMatchedConcept # the current concept being matched
    friendModules*: seq[PSym]  # friend modules; may access private data;
                               # this is used so that generic instantiations
                               # can access private object fields
    instCounter*: int          # to prevent endless instantiations
    templInstCounter*: ref int # gives every template instantiation a unique id
    inGenericContext*: int     # > 0 if we are in a generic type
    inStaticContext*: int      # > 0 if we are inside a static: block
    inUnrolledContext*: int    # > 0 if we are unrolling a loop
    compilesContextId*: int    # > 0 if we are in a ``compiles`` magic
    compilesContextIdGenerator*: int
    inGenericInst*: int        # > 0 if we are instantiating a generic
    converters*: seq[PSym]
    patterns*: seq[PSym]       # sequence of pattern matchers
    optionStack*: seq[POptionEntry]
    libs*: seq[PLib]           # all libs used by this module
    semConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.} # for the pragmas
    semExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
    semExprWithType*: proc (c: PContext, n: PNode, flags: TExprFlags = {}, expectedType: PType = nil): PNode {.nimcall.}
    semTryExpr*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
    semTryConstExpr*: proc (c: PContext, n: PNode; expectedType: PType = nil): PNode {.nimcall.}
    computeRequiresInit*: proc (c: PContext, t: PType): bool {.nimcall.}
    hasUnresolvedArgs*: proc (c: PContext, n: PNode): bool

    semOperand*: proc (c: PContext, n: PNode, flags: TExprFlags = {}): PNode {.nimcall.}
    semConstBoolExpr*: proc (c: PContext, n: PNode): PNode {.nimcall.} # XXX bite the bullet
    semOverloadedCall*: proc (c: PContext, n, nOrig: PNode,
                              filter: TSymKinds, flags: TExprFlags, expectedType: PType = nil): PNode {.nimcall.}
    semTypeNode*: proc(c: PContext, n: PNode, prev: PType): PType {.nimcall.}
    semInferredLambda*: proc(c: PContext, pt: LayeredIdTable, n: PNode): PNode
    semGenerateInstance*: proc (c: PContext, fn: PSym, pt: LayeredIdTable,
                                info: TLineInfo): PSym
    instantiateOnlyProcType*: proc (c: PContext, pt: LayeredIdTable,
                                    prc: PSym, info: TLineInfo): PType
      # used by sigmatch for explicit generic instantiations
    fitDefaultNode*: proc (c: PContext, n: var PNode, expectedType: PType)
    includedFiles*: IntSet    # used to detect recursive include files
    pureEnumFields*: TStrTable   # pure enum fields that can be used unambiguously
    userPragmas*: TStrTable
    evalContext*: PEvalContext
    unknownIdents*: IntSet     # ids of all unknown identifiers to prevent
                               # naming it multiple times
    generics*: seq[TInstantiationPair] # pending list of instantiated generics to compile
    topStmts*: int # counts the number of encountered top level statements
    lastGenericIdx*: int      # used for the generics stack
    hloLoopDetector*: int     # used to prevent endless loops in the HLO
    inParallelStmt*: int
    instTypeBoundOp*: proc (c: PContext; dc: PSym; t: PType; info: TLineInfo;
                            op: TTypeAttachedOp; col: int): PSym {.nimcall.}
    cache*: IdentCache
    graph*: ModuleGraph
    signatures*: TStrTable
    recursiveDep*: string
    suggestionsMade*: bool
    isAmbiguous*: bool # little hack
    features*: set[Feature]
    inTypeContext*, inConceptDecl*: int
    unusedImports*: seq[(PSym, TLineInfo)]
    exportIndirections*: HashSet[(int, int)] # (module.id, symbol.id)
    importModuleMap*: Table[int, int] # (module.id, module.id)
    lastTLineInfo*: TLineInfo
    sideEffects*: Table[int, seq[(TLineInfo, PSym)]] # symbol.id index
    inUncheckedAssignSection*: int
    importModuleLookup*: Table[int, seq[int]] # (module.ident.id, [module.id])
    skipTypes*: seq[PNode] # used to skip types between passes in type section. So far only used for inheritance, sets and generic bodies.
    inTypeofContext*: int

    semAsgnOpr*: proc (c: PContext; n: PNode; k: TNodeKind): PNode {.nimcall.}

  TBorrowState* = enum
    bsNone, bsReturnNotMatch, bsNoDistinct, bsGeneric, bsNotSupported, bsMatch

template config*(c: PContext): ConfigRef = c.graph.config

proc getIntLitType*(c: PContext; literal: PNode): PType =
  # we cache some common integer literal types for performance:
  let value = literal.intVal
  if value >= low(c.intTypeCache) and value <= high(c.intTypeCache):
    result = c.intTypeCache[value.int]
    if result == nil:
      let ti = getSysType(c.graph, literal.info, tyInt)
      result = copyType(ti, c.idgen, ti.owner)
      result.n = literal
      c.intTypeCache[value.int] = result
  else:
    let ti = getSysType(c.graph, literal.info, tyInt)
    result = copyType(ti, c.idgen, ti.owner)
    result.n = literal

proc setIntLitType*(c: PContext; result: PNode) =
  let i = result.intVal
  case c.config.target.intSize
  of 8: result.typ() = getIntLitType(c, result)
  of 4:
    if i >= low(int32) and i <= high(int32):
      result.typ() = getIntLitType(c, result)
    else:
      result.typ() = getSysType(c.graph, result.info, tyInt64)
  of 2:
    if i >= low(int16) and i <= high(int16):
      result.typ() = getIntLitType(c, result)
    elif i >= low(int32) and i <= high(int32):
      result.typ() = getSysType(c.graph, result.info, tyInt32)
    else:
      result.typ() = getSysType(c.graph, result.info, tyInt64)
  of 1:
    # 8 bit CPUs are insane ...
    if i >= low(int8) and i <= high(int8):
      result.typ() = getIntLitType(c, result)
    elif i >= low(int16) and i <= high(int16):
      result.typ() = getSysType(c.graph, result.info, tyInt16)
    elif i >= low(int32) and i <= high(int32):
      result.typ() = getSysType(c.graph, result.info, tyInt32)
    else:
      result.typ() = getSysType(c.graph, result.info, tyInt64)
  else:
    internalError(c.config, result.info, "invalid int size")

proc makeInstPair*(s: PSym, inst: PInstantiation): TInstantiationPair =
  result = TInstantiationPair(genericSym: s, inst: inst)

proc filename*(c: PContext): string =
  # the module's filename
  result = toFilename(c.config, FileIndex c.module.position)

proc scopeDepth*(c: PContext): int {.inline.} =
  result = if c.currentScope != nil: c.currentScope.depthLevel
           else: 0

proc getCurrOwner*(c: PContext): PSym =
  # owner stack (used for initializing the
  # owner field of syms)
  # the documentation comment always gets
  # assigned to the current owner
  result = c.graph.owners[^1]

proc pushOwner*(c: PContext; owner: PSym) =
  c.graph.owners.add(owner)

proc popOwner*(c: PContext) =
  if c.graph.owners.len > 0: setLen(c.graph.owners, c.graph.owners.len - 1)
  else: internalError(c.config, "popOwner")

proc lastOptionEntry*(c: PContext): POptionEntry =
  result = c.optionStack[^1]

proc popProcCon*(c: PContext) {.inline.} = c.p = c.p.next

proc put*(p: PProcCon; key, val: PSym) =
  if not p.mappingExists:
    p.mapping = initTable[ItemId, PSym]()
    p.mappingExists = true
  #echo "put into table ", key.info
  p.mapping[key.itemId] = val

proc get*(p: PProcCon; key: PSym): PSym =
  if not p.mappingExists: return nil
  result = p.mapping.getOrDefault(key.itemId)

proc getGenSym*(c: PContext; s: PSym): PSym =
  if sfGenSym notin s.flags: return s
  var it = c.p
  while it != nil:
    result = get(it, s)
    if result != nil:
      #echo "got from table ", result.name.s, " ", result.info
      return result
    it = it.next
  result = s

proc considerGenSyms*(c: PContext; n: PNode) =
  if n == nil:
    discard "can happen for nkFormalParams/nkArgList"
  elif n.kind == nkSym:
    let s = getGenSym(c, n.sym)
    if n.sym != s:
      n.sym = s
  else:
    for i in 0..<n.safeLen:
      considerGenSyms(c, n[i])

proc newOptionEntry*(conf: ConfigRef): POptionEntry =
  new(result)
  result.options = conf.options
  result.defaultCC = ccNimCall
  result.dynlib = nil
  result.notes = conf.notes
  result.warningAsErrors = conf.warningAsErrors

proc pushOptionEntry*(c: PContext): POptionEntry =
  new(result)
  var prev = c.optionStack[^1]
  result.options = c.config.options
  result.defaultCC = prev.defaultCC
  result.dynlib = prev.dynlib
  result.notes = c.config.notes
  result.warningAsErrors = c.config.warningAsErrors
  result.features = c.features
  c.optionStack.add(result)

proc popOptionEntry*(c: PContext) =
  c.config.options = c.optionStack[^1].options
  c.config.notes = c.optionStack[^1].notes
  c.config.warningAsErrors = c.optionStack[^1].warningAsErrors
  c.features = c.optionStack[^1].features
  c.optionStack.setLen(c.optionStack.len - 1)

proc newContext*(graph: ModuleGraph; module: PSym): PContext =
  new(result)
  result.optionStack = @[newOptionEntry(graph.config)]
  result.libs = @[]
  result.module = module
  result.friendModules = @[module]
  result.converters = @[]
  result.patterns = @[]
  result.includedFiles = initIntSet()
  result.pureEnumFields = initStrTable()
  result.userPragmas = initStrTable()
  result.generics = @[]
  result.unknownIdents = initIntSet()
  result.cache = graph.cache
  result.graph = graph
  result.signatures = initStrTable()
  result.features = graph.config.features
  if graph.config.symbolFiles != disabledSf:
    let id = module.position
    if graph.config.cmd != cmdM:
      assert graph.packed[id].status in {undefined, outdated}
    graph.packed[id].status = storing
    graph.packed[id].module = module
    initEncoder graph, module

template packedRepr*(c): untyped = c.graph.packed[c.module.position].fromDisk
template encoder*(c): untyped = c.graph.encoders[c.module.position]

proc addIncludeFileDep*(c: PContext; f: FileIndex) =
  if c.config.symbolFiles != disabledSf:
    addIncludeFileDep(c.encoder, c.packedRepr, f)

proc addImportFileDep*(c: PContext; f: FileIndex) =
  if c.config.symbolFiles != disabledSf:
    addImportFileDep(c.encoder, c.packedRepr, f)

proc addPragmaComputation*(c: PContext; n: PNode) =
  if c.config.symbolFiles != disabledSf:
    addPragmaComputation(c.encoder, c.packedRepr, n)

proc inclSym(sq: var seq[PSym], s: PSym): bool =
  for i in 0..<sq.len:
    if sq[i].id == s.id: return false
  sq.add s
  result = true

proc addConverter*(c: PContext, conv: LazySym) =
  assert conv.sym != nil
  if inclSym(c.converters, conv.sym):
    add(c.graph.ifaces[c.module.position].converters, conv)

proc addConverterDef*(c: PContext, conv: LazySym) =
  addConverter(c, conv)
  if c.config.symbolFiles != disabledSf:
    addConverter(c.encoder, c.packedRepr, conv.sym)

proc addPureEnum*(c: PContext, e: LazySym) =
  assert e.sym != nil
  add(c.graph.ifaces[c.module.position].pureEnums, e)
  if c.config.symbolFiles != disabledSf:
    addPureEnum(c.encoder, c.packedRepr, e.sym)

proc addPattern*(c: PContext, p: LazySym) =
  assert p.sym != nil
  if inclSym(c.patterns, p.sym):
    add(c.graph.ifaces[c.module.position].patterns, p)
  if c.config.symbolFiles != disabledSf:
    addTrmacro(c.encoder, c.packedRepr, p.sym)

proc exportSym*(c: PContext; s: PSym) =
  strTableAdds(c.graph, c.module, s)
  if c.config.symbolFiles != disabledSf:
    addExported(c.encoder, c.packedRepr, s)

proc reexportSym*(c: PContext; s: PSym) =
  strTableAdds(c.graph, c.module, s)
  if c.config.symbolFiles != disabledSf:
    addReexport(c.encoder, c.packedRepr, s)

proc newLib*(kind: TLibKind): PLib =
  new(result)
  result.kind = kind          #result.syms = initObjectSet()

proc addToLib*(lib: PLib, sym: PSym) =
  #if sym.annex != nil and not isGenericRoutine(sym):
  #  LocalError(sym.info, errInvalidPragma)
  sym.annex = lib

proc newTypeS*(kind: TTypeKind; c: PContext; son: sink PType = nil): PType =
  result = newType(kind, c.idgen, getCurrOwner(c), son = son)

proc makePtrType*(owner: PSym, baseType: PType; idgen: IdGenerator): PType =
  result = newType(tyPtr, idgen, owner, skipIntLit(baseType, idgen))

proc makePtrType*(c: PContext, baseType: PType): PType =
  makePtrType(getCurrOwner(c), baseType, c.idgen)

proc makeTypeWithModifier*(c: PContext,
                           modifier: TTypeKind,
                           baseType: PType): PType =
  assert modifier in {tyVar, tyLent, tyPtr, tyRef, tyStatic, tyTypeDesc}

  if modifier in {tyVar, tyLent, tyTypeDesc} and baseType.kind == modifier:
    result = baseType
  else:
    result = newTypeS(modifier, c, skipIntLit(baseType, c.idgen))

proc makeVarType*(c: PContext, baseType: PType; kind = tyVar): PType =
  if baseType.kind == kind:
    result = baseType
  else:
    result = newTypeS(kind, c, skipIntLit(baseType, c.idgen))

proc makeTypeSymNode*(c: PContext, typ: PType, info: TLineInfo): PNode =
  let typedesc = newTypeS(tyTypeDesc, c)
  incl typedesc.flags, tfCheckedForDestructor
  internalAssert(c.config, typ != nil)
  typedesc.addSonSkipIntLit(typ, c.idgen)
  let sym = newSym(skType, c.cache.idAnon, c.idgen, getCurrOwner(c), info,
                   c.config.options).linkTo(typedesc)
  result = newSymNode(sym, info)

proc makeTypeFromExpr*(c: PContext, n: PNode): PType =
  result = newTypeS(tyFromExpr, c)
  assert n != nil
  result.n = n

when false:
  proc newTypeWithSons*(owner: PSym, kind: TTypeKind, sons: seq[PType];
                        idgen: IdGenerator): PType =
    result = newType(kind, idgen, owner, sons = sons)

  proc newTypeWithSons*(c: PContext, kind: TTypeKind,
                        sons: seq[PType]): PType =
    result = newType(kind, c.idgen, getCurrOwner(c), sons = sons)

proc makeStaticExpr*(c: PContext, n: PNode): PNode =
  result = newNodeI(nkStaticExpr, n.info)
  result.sons = @[n]
  result.typ() = if n.typ != nil and n.typ.kind == tyStatic: n.typ
               else: newTypeS(tyStatic, c, n.typ)

proc makeAndType*(c: PContext, t1, t2: PType): PType =
  result = newTypeS(tyAnd, c)
  result.rawAddSon t1
  result.rawAddSon t2
  propagateToOwner(result, t1)
  propagateToOwner(result, t2)
  result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
  result.flags.incl tfHasMeta

proc makeOrType*(c: PContext, t1, t2: PType): PType =
  if t1.kind != tyOr and t2.kind != tyOr:
    result = newTypeS(tyOr, c)
    result.rawAddSon t1
    result.rawAddSon t2
  else:
    result = newTypeS(tyOr, c)
    template addOr(t1) =
      if t1.kind == tyOr:
        for x in t1.kids: result.rawAddSon x
      else:
        result.rawAddSon t1
    addOr(t1)
    addOr(t2)
  propagateToOwner(result, t1)
  propagateToOwner(result, t2)
  result.flags.incl((t1.flags + t2.flags) * {tfHasStatic})
  result.flags.incl tfHasMeta

proc makeNotType*(c: PContext, t1: PType): PType =
  result = newTypeS(tyNot, c, son = t1)
  propagateToOwner(result, t1)
  result.flags.incl(t1.flags * {tfHasStatic})
  result.flags.incl tfHasMeta

proc nMinusOne(c: PContext; n: PNode): PNode =
  result = newTreeI(nkCall, n.info, newSymNode(getSysMagic(c.graph, n.info, "pred", mPred)), n)

# Remember to fix the procs below this one when you make changes!
proc makeRangeWithStaticExpr*(c: PContext, n: PNode): PType =
  let intType = getSysType(c.graph, n.info, tyInt)
  result = newTypeS(tyRange, c, son = intType)
  if n.typ != nil and n.typ.n == nil:
    result.flags.incl tfUnresolved
  result.n = newTreeI(nkRange, n.info, newIntTypeNode(0, intType),
    makeStaticExpr(c, nMinusOne(c, n)))

template rangeHasUnresolvedStatic*(t: PType): bool =
  tfUnresolved in t.flags

proc errorType*(c: PContext): PType =
  ## creates a type representing an error state
  result = newTypeS(tyError, c)
  result.flags.incl tfCheckedForDestructor

proc errorNode*(c: PContext, n: PNode): PNode =
  result = newNodeI(nkEmpty, n.info)
  result.typ() = errorType(c)

# These mimic localError
template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, msg: TMsgKind, arg: string): PNode =
  liMessage(c.config, info, msg, arg, doNothing, instLoc())
  errorNode(c, n)

template localErrorNode*(c: PContext, n: PNode, info: TLineInfo, arg: string): PNode =
  liMessage(c.config, info, errGenerated, arg, doNothing, instLoc())
  errorNode(c, n)

template localErrorNode*(c: PContext, n: PNode, msg: TMsgKind, arg: string): PNode =
  let n2 = n
  liMessage(c.config, n2.info, msg, arg, doNothing, instLoc())
  errorNode(c, n2)

template localErrorNode*(c: PContext, n: PNode, arg: string): PNode =
  let n2 = n
  liMessage(c.config, n2.info, errGenerated, arg, doNothing, instLoc())
  errorNode(c, n2)

when false:
  proc fillTypeS*(dest: PType, kind: TTypeKind, c: PContext) =
    dest.kind = kind
    dest.owner = getCurrOwner(c)
    dest.size = - 1

proc makeRangeType*(c: PContext; first, last: BiggestInt;
                    info: TLineInfo; intType: PType = nil): PType =
  let intType = if intType != nil: intType else: getSysType(c.graph, info, tyInt)
  var n = newNodeI(nkRange, info)
  n.add newIntTypeNode(first, intType)
  n.add newIntTypeNode(last, intType)
  result = newTypeS(tyRange, c)
  result.n = n
  addSonSkipIntLit(result, intType, c.idgen) # basetype of range

proc isSelf*(t: PType): bool {.inline.} =
  ## Is this the magical 'Self' type from concepts?
  t.kind == tyTypeDesc and tfPacked in t.flags

proc makeTypeDesc*(c: PContext, typ: PType): PType =
  if typ.kind == tyTypeDesc and not isSelf(typ):
    result = typ
  else:
    result = newTypeS(tyTypeDesc, c, skipIntLit(typ, c.idgen))
    incl result.flags, tfCheckedForDestructor

proc symFromType*(c: PContext; t: PType, info: TLineInfo): PSym =
  if t.sym != nil: return t.sym
  result = newSym(skType, getIdent(c.cache, "AnonType"), c.idgen, t.owner, info)
  result.flags.incl sfAnon
  result.typ = t

proc symNodeFromType*(c: PContext, t: PType, info: TLineInfo): PNode =
  result = newSymNode(symFromType(c, t, info), info)
  result.typ() = makeTypeDesc(c, t)

proc markIndirect*(c: PContext, s: PSym) {.inline.} =
  if s.kind in {skProc, skFunc, skConverter, skMethod, skIterator}:
    incl(s.flags, sfAddrTaken)
    # XXX add to 'c' for global analysis

proc illFormedAst*(n: PNode; conf: ConfigRef) =
  globalError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))

proc illFormedAstLocal*(n: PNode; conf: ConfigRef) =
  localError(conf, n.info, errIllFormedAstX, renderTree(n, {renderNoComments}))

proc checkSonsLen*(n: PNode, length: int; conf: ConfigRef) =
  if n.len != length: illFormedAst(n, conf)

proc checkMinSonsLen*(n: PNode, length: int; conf: ConfigRef) =
  if n.len < length: illFormedAst(n, conf)

proc isTopLevel*(c: PContext): bool {.inline.} =
  result = c.currentScope.depthLevel <= 2

proc isTopLevelInsideDeclaration*(c: PContext, sym: PSym): bool {.inline.} =
  # for routeKinds the scope isn't closed yet:
  c.currentScope.depthLevel <= 2 + ord(sym.kind in routineKinds)

proc pushCaseContext*(c: PContext, caseNode: PNode) =
  c.p.caseContext.add((caseNode, 0))

proc popCaseContext*(c: PContext) =
  discard pop(c.p.caseContext)

proc setCaseContextIdx*(c: PContext, idx: int) =
  c.p.caseContext[^1].idx = idx

template addExport*(c: PContext; s: PSym) =
  ## convenience to export a symbol from the current module
  addExport(c.graph, c.module, s)

proc storeRodNode*(c: PContext, n: PNode) =
  if c.config.symbolFiles != disabledSf:
    toPackedNodeTopLevel(n, c.encoder, c.packedRepr)

proc addToGenericProcCache*(c: PContext; s: PSym; inst: PInstantiation) =
  c.graph.procInstCache.mgetOrPut(s.itemId, @[]).add LazyInstantiation(module: c.module.position, inst: inst)
  if c.config.symbolFiles != disabledSf:
    storeInstantiation(c.encoder, c.packedRepr, s, inst)

proc addToGenericCache*(c: PContext; s: PSym; inst: PType) =
  c.graph.typeInstCache.mgetOrPut(s.itemId, @[]).add LazyType(typ: inst)
  if c.config.symbolFiles != disabledSf:
    storeTypeInst(c.encoder, c.packedRepr, s, inst)

proc sealRodFile*(c: PContext) =
  if c.config.symbolFiles != disabledSf:
    if c.graph.vm != nil:
      for (m, n) in PCtx(c.graph.vm).vmstateDiff:
        if m == c.module:
          addPragmaComputation(c, n)
    c.idgen.sealed = true # no further additions are allowed

proc rememberExpansion*(c: PContext; info: TLineInfo; expandedSym: PSym) =
  ## Templates and macros are very special in Nim; these have
  ## inlining semantics so after semantic checking they leave no trace
  ## in the sem'checked AST. This is very bad for IDE-like tooling
  ## ("find all usages of this template" would not work). We need special
  ## logic to remember macro/template expansions. This is done here and
  ## delegated to the "rod" file mechanism.
  if c.config.symbolFiles != disabledSf:
    storeExpansion(c.encoder, c.packedRepr, info, expandedSym)

const
  errVarForOutParamNeededX = "for a 'var' type a variable needs to be passed; but '$1' is immutable"
  errXStackEscape = "address of '$1' may not escape its stack frame"

proc renderNotLValue*(n: PNode): string =
  result = $n
  let n = if n.kind == nkHiddenDeref: n[0] else: n
  if n.kind == nkHiddenCallConv and n.len > 1:
    result = $n[0] & "(" & result & ")"
  elif n.kind in {nkHiddenStdConv, nkHiddenSubConv} and n.len == 2:
    result = typeToString(n.typ.skipTypes(abstractVar)) & "(" & result & ")"

proc isAssignable(c: PContext, n: PNode): TAssignableResult =
  result = parampatterns.isAssignable(c.p.owner, n)

proc newHiddenAddrTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
  if n.kind == nkHiddenDeref and not (c.config.backend == backendCpp or
                                      sfCompileToCpp in c.module.flags):
    checkSonsLen(n, 1, c.config)
    result = n[0]
  else:
    result = newNodeIT(nkHiddenAddr, n.info, makeVarType(c, n.typ))
    result.add n
    let aa = isAssignable(c, n)
    let sym = getRoot(n)
    if aa notin {arLValue, arLocalLValue}:
      if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
        discard "allow access within a cast(unsafeAssign) section"
      elif strictDefs in c.features and aa == arAddressableConst and
              sym != nil and sym.kind == skLet and isOutParam:
        discard "allow let varaibles to be passed to out parameters"
      else:
        localError(c.config, n.info, errVarForOutParamNeededX % renderNotLValue(n))

proc analyseIfAddressTaken(c: PContext, n: PNode, isOutParam: bool): PNode =
  result = n
  case n.kind
  of nkSym:
    # n.sym.typ can be nil in 'check' mode ...
    if n.sym.typ != nil and
        skipTypes(n.sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n.sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  of nkDotExpr:
    checkSonsLen(n, 2, c.config)
    if n[1].kind != nkSym:
      internalError(c.config, n.info, "analyseIfAddressTaken")
      return
    if skipTypes(n[1].sym.typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      incl(n[1].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  of nkBracketExpr:
    checkMinSonsLen(n, 1, c.config)
    if skipTypes(n[0].typ, abstractInst-{tyTypeDesc}).kind notin {tyVar, tyLent}:
      if n[0].kind == nkSym: incl(n[0].sym.flags, sfAddrTaken)
      result = newHiddenAddrTaken(c, n, isOutParam)
  else:
    result = newHiddenAddrTaken(c, n, isOutParam)

proc analyseIfAddressTakenInCall*(c: PContext, n: PNode, isConverter = false) =
  checkMinSonsLen(n, 1, c.config)
  if n[0].typ == nil:
    # n[0] might be erroring node in nimsuggest
    return
  const
    FakeVarParams = {mNew, mNewFinalize, mInc, ast.mDec, mIncl, mExcl,
      mSetLengthStr, mSetLengthSeq, mAppendStrCh, mAppendStrStr, mSwap,
      mAppendSeqElem, mNewSeq, mShallowCopy, mDeepCopy, mMove, mWasMoved}

  template checkIfConverterCalled(c: PContext, n: PNode) =
    ## Checks if there is a converter call which wouldn't be checked otherwise
    # Call can sometimes be wrapped in a deref
    let node = if n.kind == nkHiddenDeref: n[0] else: n
    if node.kind == nkHiddenCallConv:
      analyseIfAddressTakenInCall(c, node, true)
  # get the real type of the callee
  # it may be a proc var with a generic alias type, so we skip over them
  var t = n[0].typ.skipTypes({tyGenericInst, tyAlias, tySink})
  if n[0].kind == nkSym and n[0].sym.magic in FakeVarParams:
    # BUGFIX: check for L-Value still needs to be done for the arguments!
    # note sometimes this is eval'ed twice so we check for nkHiddenAddr here:
    for i in 1..<n.len:
      if i < t.len and t[i] != nil and
          skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
        let it = n[i]
        let aa = isAssignable(c, it)
        if aa notin {arLValue, arLocalLValue}:
          if it.kind != nkHiddenAddr:
            if aa == arDiscriminant and c.inUncheckedAssignSection > 0:
              discard "allow access within a cast(unsafeAssign) section"
            else:
              localError(c.config, it.info, errVarForOutParamNeededX % $it)
        # Make sure to still check arguments for converters
        c.checkIfConverterCalled(n[i])
    # bug #5113: disallow newSeq(result) where result is a 'var T':
    if n[0].sym.magic in {mNew, mNewFinalize, mNewSeq}:
      var arg = n[1] #.skipAddr
      if arg.kind == nkHiddenDeref: arg = arg[0]
      if arg.kind == nkSym and arg.sym.kind == skResult and
          arg.typ.skipTypes(abstractInst).kind in {tyVar, tyLent}:
        localError(c.config, n.info, errXStackEscape % renderTree(n[1], {renderNoComments}))

    return
  for i in 1..<n.len:
    let n = if n.kind == nkHiddenDeref: n[0] else: n
    c.checkIfConverterCalled(n[i])
    if i < t.len and
        skipTypes(t[i], abstractInst-{tyTypeDesc}).kind in {tyVar}:
      # Converters wrap var parameters in nkHiddenAddr but they haven't been analysed yet.
      # So we need to make sure we are checking them still when in a converter call
      if n[i].kind != nkHiddenAddr or isConverter:
        n[i] = analyseIfAddressTaken(c, n[i].skipAddr(), isOutParam(skipTypes(t[i], abstractInst-{tyTypeDesc})))


proc replaceHookMagic*(c: PContext, n: PNode, kind: TTypeAttachedOp): PNode =
  ## Replaces builtin generic hooks with lifted hooks.
  case kind
  of attachedDestructor:
    result = n
    let t = n[1].typ.skipTypes(abstractVar)
    let op = getAttachedOp(c.graph, t, attachedDestructor)
    if op != nil:
      result[0] = newSymNode(op)
      if op.typ != nil and op.typ.len == 2 and op.typ.firstParamType.kind != tyVar:
        if n[1].kind == nkSym and n[1].sym.kind == skParam and
            n[1].typ.kind == tyVar:
          result[1] = genDeref(n[1])
        else:
          result[1] = skipAddr(n[1])
  of attachedTrace:
    result = n
    let t = n[1].typ.skipTypes(abstractVar)
    let op = getAttachedOp(c.graph, t, attachedTrace)
    if op != nil:
      result[0] = newSymNode(op)
  of attachedDup:
    result = n
    let t = n[1].typ.skipTypes(abstractVar)
    let op = getAttachedOp(c.graph, t, attachedDup)
    if op != nil:
      result[0] = newSymNode(op)
      if op.typ.len == 3:
        let boolLit = newIntLit(c.graph, n.info, 1)
        boolLit.typ() = getSysType(c.graph, n.info, tyBool)
        result.add boolLit
  of attachedWasMoved:
    result = n
    let t = n[1].typ.skipTypes(abstractVar)
    let op = getAttachedOp(c.graph, t, attachedWasMoved)
    if op != nil:
      result[0] = newSymNode(op)
      analyseIfAddressTakenInCall(c, result, false)
  of attachedSink:
    result = c.semAsgnOpr(c, n, nkSinkAsgn)
  of attachedAsgn:
    result = c.semAsgnOpr(c, n, nkAsgn)
  of attachedDeepCopy:
    result = n
    let t = n[1].typ.skipTypes(abstractVar)
    let op = getAttachedOp(c.graph, t, kind)
    if op != nil:
      result[0] = newSymNode(op)