1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
import numpy as np
import sympy
from nipy.modalities.fmri import formula, utils, hrf
import pylab
t = formula.Term('t')
def linBspline(t, knots):
""" Create a linear B spline that is zero outside [knots[0],
knots[-1]] (knots is assumed to be sorted).
"""
fns = []; symbols=[]
knots = np.array(knots)
for i in range(knots.shape[0]-2):
n = 'bs_%s' % i
s = sympy.Function(n)
k1, k2, k3 = knots[i:i+3]
d1 = k2-k1
d2 = k3-k2
def anon(x,k1=k1,k2=k2,k3=k3):
return ((x-k1) / d1 * np.greater(x, k1) * np.less_equal(x, k2) +
(k3-x) / d1 * np.greater(x, k2) * np.less(x, k3))
fns.append((n, anon))
symbols.append(s(t))
ff = formula.Formula(symbols)
for n, l in fns:
ff.aliases[n] = l
return ff
t = formula.Term('t')
bsp = linBspline(t, np.arange(0,10,2))
tt = np.linspace(0,50,101)
tval = tt.view(np.dtype([('t', np.float)]))
e = np.random.uniform(low=0, high=3, size=(20,)) + 20.
e = np.cumsum(e)
f = formula.Formula([utils.events(e, f=hrf.symbolic(term)) for term in bsp.design])
for k, v in bsp.aliases.items():
f.aliases[k] = v
d = formula.Design(f, return_float=True)
X = d(tval)
pylab.plot(X[:,0])
pylab.plot(X[:,1])
pylab.plot(X[:,2])
pylab.show()
|