1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Example of (step-by-step) GLM application and result creation.
More specifically,
1. A sequence of fMRI volumes are loaded
2. A design matrix describing all the effects related to the data is computed
3. a mask of the useful brain volume is computed
4. A GLM is applied to the dataset (effect/covariance,
then contrast estimation)
Note that this corresponds to a single session
Author : Bertrand Thirion, 2010
"""
print __doc__
import numpy as np
import os.path as op
import matplotlib.pylab as mp
import pylab
from nipy.neurospin.utils.mask import compute_mask_files
from nipy.io.imageformats import load, save, Nifti1Image
import get_data_light
import nipy.neurospin.glm
import nipy.neurospin.utils.design_matrix as dm
import tempfile
#######################################
# Data and analysis parameters
#######################################
# volume mask
get_data_light.get_localizer_dataset()
data_path = op.expanduser(op.join('~', '.nipy', 'tests', 'data',
's12069_swaloc1_corr.nii.gz'))
paradigm_file = op.expanduser(op.join('~', '.nipy', 'tests', 'data',
'localizer_paradigm.csv'))
# timing
n_scans = 128
tr = 2.4
# paradigm
frametimes = np.linspace(0, (n_scans-1)*tr, n_scans)
conditions = [ 'damier_H', 'damier_V', 'clicDaudio', 'clicGaudio',
'clicDvideo', 'clicGvideo', 'calculaudio', 'calculvideo', 'phrasevideo',
'phraseaudio' ]
# confounds
hrf_model = 'Canonical With Derivative'
drift_model = "Cosine"
hfcut = 128
# write directory
swd = tempfile.mkdtemp()
########################################
# Design matrix
########################################
paradigm = dm.load_protocol_from_csv_file(paradigm_file, session=0)
design_matrix = dm.DesignMatrix( frametimes, paradigm, hrf_model=hrf_model,
drift_model=drift_model, hfcut=hfcut,
cond_ids= conditions)
design_matrix.show()
# design_matrix.save(...)
########################################
# Mask the data
########################################
mask_path = op.join(swd, 'mask.nii')
mask_array = compute_mask_files( data_path, mask_path, False, 0.4, 0.9)
########################################
# Perform a GLM analysis
########################################
fmri_image = load(data_path)
Y = fmri_image.get_data()[mask_array]
model = "ar1"
method = "kalman"
my_glm = nipy.neurospin.glm.glm()
glm = my_glm.fit(Y.T, design_matrix.matrix,
method="kalman", model="ar1")
#########################################
# Specify the contrasts
#########################################
# simplest ones
contrasts = {}
contrast_id = conditions
for i in range(len(conditions)):
contrasts['%s' % conditions[i]]= np.eye(len(design_matrix.names))[2*i]
# and more complex/ interesting ones
contrasts["audio"] = contrasts["clicDaudio"] + contrasts["clicGaudio"] +\
contrasts["calculaudio"] + contrasts["phraseaudio"]
contrasts["video"] = contrasts["clicDvideo"] + contrasts["clicGvideo"] + \
contrasts["calculvideo"] + contrasts["phrasevideo"]
contrasts["left"] = contrasts["clicGaudio"] + contrasts["clicGvideo"]
contrasts["right"] = contrasts["clicDaudio"] + contrasts["clicDvideo"]
contrasts["computation"] = contrasts["calculaudio"] +contrasts["calculvideo"]
contrasts["sentences"] = contrasts["phraseaudio"] + contrasts["phrasevideo"]
contrasts["H-V"] = contrasts["damier_H"] - contrasts["damier_V"]
contrasts["V-H"] =contrasts["damier_V"] - contrasts["damier_H"]
contrasts["left-right"] = contrasts["left"] - contrasts["right"]
contrasts["right-left"] = contrasts["right"] - contrasts["left"]
contrasts["audio-video"] = contrasts["audio"] - contrasts["video"]
contrasts["video-audio"] = contrasts["video"] - contrasts["audio"]
contrasts["computation-sentences"] = contrasts["computation"] - \
contrasts["sentences"]
contrasts["reading-visual"] = contrasts["sentences"]*2 - \
contrasts["damier_H"] - contrasts["damier_V"]
#########################################
# Estimate the contrasts
#########################################
for contrast_id in contrasts:
lcontrast = my_glm.contrast(contrasts[contrast_id])
#
contrast_path = op.join(swd, '%s_z_map.nii'% contrast_id)
write_array = mask_array.astype(np.float)
write_array[mask_array] = lcontrast.zscore()
contrast_image = Nifti1Image(write_array, fmri_image.get_affine() )
save(contrast_image, contrast_path)
#########################################
# End
#########################################
print "All the results were witten in %s" %swd
pylab.show()
|