File: example_roi_and_glm.py

package info (click to toggle)
nipy 0.1.2%2B20100526-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 11,992 kB
  • ctags: 13,434
  • sloc: python: 47,720; ansic: 41,334; makefile: 197
file content (189 lines) | stat: -rw-r--r-- 5,600 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
This is an example where
1. An sequence of fMRI volumes are loaded
2. An ROI mask is loaded
3. A design matrix describing all the effects related to the data is computed
4. A GLM is applied to all voxels in the ROI
5. A summary of the results is provided for certain contrasts
6. A plot of the hrf is provided for the mean reponse in the hrf
7. Fitted/adjusted response plots are provided

Author : Bertrand Thirion, 2010
"""
print __doc__

import numpy as np
import os.path as op
import matplotlib.pylab as mp

from nipy.io.imageformats import load, save, Nifti1Image
import nipy.neurospin.utils.design_matrix as dm
from nipy.neurospin.utils.simul_multisubject_fmri_dataset import surrogate_4d_dataset
import get_data_light
import nipy.neurospin.glm as GLM
from nipy.neurospin.spatial_models.roi import MultipleROI

#######################################
# Simulation parameters
#######################################

# volume mask
get_data_light.getIt()
mask_path = op.expanduser(op.join('~', '.nipy', 'tests', 'data',
                                 'mask.nii.gz'))
mask = load(mask_path)

# timing
n_scans  =128
tr = 2.4

# paradigm
frametimes = np.linspace(0, (n_scans-1)*tr, n_scans)
conditions = np.arange(20)%2
onsets = np.linspace(5, (n_scans-1)*tr-10, 20) # in seconds
hrf_model = 'Canonical'
motion = np.cumsum(np.random.randn(n_scans, 6),0)
add_reg_names = ['tx','ty','tz','rx','ry','rz']

# write directory
swd = '/tmp'

########################################
# Design matrix
########################################

paradigm = np.vstack(([conditions, onsets])).T
paradigm = dm.EventRelatedParadigm(conditions, onsets)
X, names = dm.dmtx_light(frametimes, paradigm, drift_model='Cosine', hfcut=128,
               hrf_model=hrf_model, add_regs=motion,
               add_reg_names=add_reg_names)


#######################################
# Get the FMRI data
#######################################

fmri_data = surrogate_4d_dataset(mask=mask, dmtx=X, seed=1)

# if you want to save it as an image
# data_file = op.join(swd,'fmri_data.nii')
# save(fmri_data, data_file)

########################################
# Perform a GLM analysis
########################################

# GLM fit
Y = fmri_data.get_data()[mask.get_data()>0, :]
model = "ar1"
method = "kalman"
glm = GLM.glm()
glm.fit(Y.T, X, method=method, model=model)

# specifiy the contrast [1 -1 0 ..]
contrast = np.zeros(X.shape[1])
contrast[0] = 1
contrast[1] = -1
my_contrast = glm.contrast(contrast)

# compute the constrast image related to it
zvals = my_contrast.zscore()
zmap = mask.get_data().astype(np.float)
zmap[zmap>0] = zmap[zmap>0]*zvals
contrast_image = Nifti1Image(zmap, mask.get_affine())
# if you want to save the contrast as an image
# contrast_path = op.join(swd, 'zmap.nii')
# save(contrast_image, contrast_path)


########################################
# Create ROIs
########################################

positions = np.array([[60, -30, 5],[50, 27, 5]])
# in mm (here in the MNI space)
radii = np.array([8,6])
mroi = MultipleROI( affine=mask.get_affine(), shape=mask.get_shape())
mroi.as_multiple_balls(positions, radii)

# to save an image of the ROIs
mroi.make_image((op.join(swd, "roi.nii")))

# exact the time courses with ROIs
mroi.set_discrete_feature_from_image('signal', image=fmri_data)

# ROI average time courses
mroi.discrete_to_roi_features('signal')

# roi-level contrast average
mroi.set_discrete_feature_from_image('contrast', image=contrast_image)
mroi.discrete_to_roi_features('contrast')


########################################
# GLM analysis on the ROI average time courses
########################################

nreg = len(names)
ROI_tc = mroi.get_roi_feature('signal')
glm.fit(ROI_tc.T, X, method=method, model=model)

mp.figure()
mp.subplot(1, 2, 1)
b1 = mp.bar(np.arange(nreg-1), glm.beta[:-1,0], width=.4, color='blue',
            label='r1')
b2 = mp.bar(np.arange(nreg-1)+0.3, glm.beta[:-1,1], width=.4, color='red',
            label='r2')
mp.xticks(np.arange(nreg-1), names[:-1])
mp.legend()
mp.title('parameters estimates for the roi time courses')
bx =  mp.subplot(1, 2 ,2)
mroi.plot_discrete_feature('contrast', bx)
mp.show()


########################################
# fitted and adjusted response
########################################

res = ROI_tc -np.dot(glm.beta.T, X.T)
proj = np.eye(nreg)
proj[2:] = 0
fit = np.dot(np.dot(glm.beta.T,proj),X.T)

# plot it
mp.figure()
for k in range(mroi.k):
    mp.subplot(mroi.k, 1, k+1)
    mp.plot(fit[k])
    mp.plot(fit[k] + res[k],'r')
    mp.xlabel('time (scans)')
    mp.legend(('effects','adjusted'))


###########################################
# hrf for condition 1
############################################

fir_order = 6
X_fir,name_dir = dm.dmtx_light(
    frametimes, paradigm, hrf_model='FIR', drift_model='Cosine', drift_order=3,
    fir_delays = tr*np.arange(fir_order), fir_duration=tr, add_regs=motion,
    add_reg_names=add_reg_names)
glm.fit(ROI_tc.T, X_fir, method=method, model=model)

mp.figure()
for k in range(mroi.k):
    mp.subplot(mroi.k, 1, k+1)
    var = np.diag(glm.nvbeta[:,:,k])*glm.s2[k]
    mp.errorbar(np.arange(fir_order), glm.beta[:fir_order,k],
                yerr=np.sqrt(var[:fir_order]))
    mp.errorbar(np.arange(fir_order), glm.beta[fir_order:2*fir_order,k],
                yerr=np.sqrt(var[fir_order:2*fir_order]))
    mp.legend(('condition c0','condition c1'))
    mp.title('estimated hrf shape')
    mp.xlabel('time(scans)')
mp.show()