1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Example of script to parcellate mutli-subject data
author: Bertrand Thirion, 2005-2009
"""
import os.path as op
import cPickle
import tempfile
from nipy.neurospin.spatial_models.parcellation import Parcellation
from nipy.neurospin.spatial_models.parcel_io import *
from nipy.neurospin.spatial_models.hierarchical_parcellation import hparcel
import get_data_light
# Get the data
get_data_light.getIt()
nbsubj = 12
subj_id = range(nbsubj)
numbeta = [29]
data_dir = op.expanduser(op.join('~', '.nipy', 'tests', 'data',
'group_t_images'))
mask_images = [op.join(data_dir,'mask_subj%02d.nii'%n)
for n in range(nbsubj)]
learn_images =[[ op.join(data_dir,'spmT_%04d_subj_%02d.nii'%(nb,n))
for nb in numbeta]
for n in range(nbsubj)]
test_images=learn_images
nbeta = len(numbeta)
# parameter for the intersection of the mask
ths = nbsubj/2
# possibly, dimension reduction can performed on the input data
# (not recommended)
fdim = 3
# verbosity mode
verbose = 1
# number of parcels
nbparcel = 500
# write dir
swd = tempfile.mkdtemp()
# prepare the parcel structure
fpa,ldata,coord = parcel_input(mask_images,nbeta,learn_images,ths,fdim)
fpa.k = nbparcel
# run the algorithm
fpa = hparcel(fpa,ldata,coord)
#fpa,prfx0 = hparcel(fpa,ldata,coord,nbperm=200,niter=5,verbose)
#produce some output images
Parcellation_output(fpa,mask_images,learn_images,coord,subj_id,
verbose=1,swd=swd)
# do some parcellation-based analysis:
# take some test images whose parcel-based signal needs to be assessed
test_images=learn_images
# a design matrix for possibly subject-specific effects
DMtx = None
# compute and write the parcel-based statistics
Parcellation_based_analysis(fpa,test_images,numbeta,swd,DMtx,verbose)
print "Wrote everything in %s" %swd
|