1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Script that perform the first-level analysis of a dataset of the FIAC
Last updated by B.Thirion
Author : Lise Favre, Bertrand Thirion, 2008-2010
"""
import os
from numpy import arange
from nipy.externals.configobj import ConfigObj
from nipy.neurospin.utils.mask import compute_mask_files
from nipy.neurospin.glm_files_layout import glm_tools, contrast_tools
# -----------------------------------------------------------
# --------- Set the paths -----------------------------------
#-----------------------------------------------------------
DBPath ="/neurospin/lnao/Panabase/data_fiac/fiac_fsl/"
Subjects = [ "fiac1"]
#Subjects = ["fiac2", "fiac3", "fiac4", "fiac6", "fiac8",\
# "fiac9", "fiac10", "fiac11", "fiac12", "fiac13",\
# "fiac14", "fiac15"]
Acquisitions = ["acquisition"]
Sessions = ["fonc1", "fonc2"]#["fonc3", "fonc4"]
model_id = "default"
fmri_wc = "swra*.nii.gz"
# ---------------------------------------------------------
# -------- General Information ----------------------------
# ---------------------------------------------------------
tr = 2.5
nb_frames = 191
frametimes = tr * arange(nb_frames)
Conditions = ["SSt-SSp", "SSt-DSp", "DSt-SSp", "DSt-DSp", "FirstSt"]
# ---------------------------------------------------------
# ------ First level analysis parameters ---------------------
# ---------------------------------------------------------
#---------- Masking parameters
infTh = 0.4
supTh = 0.9
#---------- Design Matrix
# hrf model, to be chosen among "Canonical",
# "Canonical With Derivative" or "FIR Model"
hrf_model = "Canonical With Derivative"
# Possible choices for drift : "Blank", "Cosine", "Polynomial"
drift_model = "Cosine"
hfcut = 128
#--------- GLM options
# Possible choices : "Kalman_AR1", "Kalman", "Ordinary Least Squares"
fit_algo = "Kalman_AR1"
#####################################################################
# Launching Pipeline on all subjects, all acquisitions, all sessions
#####################################################################
# main loop on subjects
for s in Subjects:
print "Subject : %s" % s
for a in Acquisitions:
# step 1. set all the paths
basePath = os.sep.join((DBPath, s, "fMRI", a))
paths = glm_tools. generate_all_brainvisa_paths( basePath, Sessions,
fmri_wc, model_id)
misc = ConfigObj(paths['misc'])
misc["sessions"] = Sessions
misc["tasks"] = Conditions
misc["mask_url"] = paths["mask"]
misc.write()
# step 2. Create one design matrix for each session
design_matrices={}
for sess in Sessions:
design_matrices[sess] = glm_tools.design_matrix(
paths['misc'], paths['dmtx'][sess], sess, paths['paradigm'],
frametimes, hrf_model=hrf_model, drift_model=drift_model,
hfcut=hfcut, model=model_id)
# step 3. Compute the Mask
# fixme : it should be possible to provide a pre-computed mask
print "Computing the Mask"
mask_array = compute_mask_files(paths['fmri'].values()[0][0],
paths['mask'], False, infTh, supTh)
# step 4. Create Contrast Files
print "Creating Contrasts"
clist = contrast_tools.ContrastList(misc=misc)
d = clist.dic
d["SStSSp_minus_DStDSp"] = d["SSt-SSp"] - d["DSt-DSp"]
d["DStDSp_minus_SStSSp"] = d["DSt-DSp"] - d["SSt-SSp"]
d["DSt_minus_SSt"] = d["DSt-SSp"] + d["DSt-DSp"]\
- d["SSt-SSp"] - d["SSt-DSp"]
d["DSp_minus_SSp"] = d["DSt-DSp"] - d["DSt-SSp"]\
- d["SSt-SSp"] + d["SSt-DSp"]
d["DSt_minus_SSt_for_DSp"] = d["DSt-DSp"] - d["SSt-DSp"]
d["DSp_minus_SSp_for_DSt"] = d["DSt-DSp"] - d["DSt-SSp"]
if d.has_key("FirstSt"):
d["Deactivation"] = d["FirstSt"] - d["SSt-SSp"]\
- d["DSt-DSp"] - d["DSt-DSp"] - d["SSt-SSp"]
else:
d["Deactivation"] = (d["SSt-SSp"] * -1)\
- d["DSt-DSp"] - d["DSt-DSp"] - d["SSt-SSp"]
contrast = clist.save_dic(paths['contrast_file'])
CompletePaths = glm_tools.generate_brainvisa_ouput_paths(
paths["contrasts"], contrast)
# step 5. Fit the glm for each session
glms = {}
for sess in Sessions:
print "Fitting GLM for session : %s" % sess
glms[sess] = glm_tools.glm_fit(
paths['fmri'][sess], design_matrices[sess] ,
paths['glm_dump'][sess], paths['glm_config'][sess],
fit_algo, paths['mask'])
#6. Compute the Contrasts
print "Computing contrasts"
glm_tools.compute_contrasts(contrast, misc, CompletePaths,
glms, model=model_id)
|