1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Script that performs the GLM analysis on the cortical surface
In order to obtain retinotopic maps
Author : Bertrand Thirion, 2010
"""
import os
import numpy as np
from nipy.externals.configobj import ConfigObj
from nipy.neurospin.utils.mask import compute_mask_files
from nipy.neurospin.glm_files_layout import glm_tools, contrast_tools, \
cortical_glm
# -----------------------------------------------------------
# --------- Set the paths -----------------------------------
#-----------------------------------------------------------
DBPath = "/volatile/thirion/fs_db"
Subjects = ["bru3072"]
Acquisitions = [""]
Sessions = ["ima1","ima2","ima3","ima4"]
model_id = "default"
# choose volume-based or surface-based analysis
side = 'left'#'right'#'False'#
fmri_wc = "rima*.img"
if side=='left':
fmri_wc = "left_tex*.tex"
elif side=='right':
fmri_wc = "right_tex*.tex"
# ---------------------------------------------------------
# -------- General Information ----------------------------
# ---------------------------------------------------------
tr = 2.0
nb_frames = 130
frametimes = np.arange(nb_frames) * tr
period = 8.
r1 = np.sin( 2*np.pi*period/128 * np.arange(130))
r2 = np.cos( 2*np.pi*period/128 * np.arange(130))
reg_matrix = np.vstack((r1, r2)).T
Reg = {'ima1':['sin_wedge_pos','cos_wedge_pos'],
'ima2':['sin_wedge_neg','cos_wedge_neg'],
'ima3':['sin_ring_pos','cos_ring_pos'],
'ima4':['sin_ring_neg','cos_ring_neg']}
AllReg = ['sin_wedge_neg','cos_wedge_neg','sin_wedge_pos','cos_wedge_pos',
'sin_ring_pos','cos_ring_pos','sin_ring_neg','cos_ring_neg']
# ---------------------------------------------------------
# ------ First level analysis parameters ---------------------
# ---------------------------------------------------------
#---------- Masking parameters
infTh = 0.7
supTh = 0.9
#---------- Design Matrix
# Possible choices for hrfType : "Canonical", \
# "Canonical With Derivative" or "FIR"
hrfType = "Canonical"
# Possible choices for drift : "Blank", "Cosine", "Polynomial"
drift_model = "Cosine"
hfcut = 80
#-------------- GLM options
# Possible choices : "Kalman_AR1", "Kalman", "Ordinary Least Squares"
fit_algo = "Kalman_AR1"
# ------------------------------------------------------------------
# Launching Pipeline on all subjects, all acquisitions, all sessions
# -------------------------------------------------------------------
# Treat sequentially all subjects & acquisitions
for s in Subjects:
print "Subject : %s" % s
SubjectPath = os.sep.join((DBPath, s))
for a in Acquisitions:
# step 1. set all the paths
basePath = os.sep.join((DBPath, s, "fmri", a))
paths = glm_tools.generate_all_brainvisa_paths(
basePath, Sessions, fmri_wc, model_id, paradigm_id=None)
for sess in Sessions:
paths['fmri'][sess] = paths['fmri'][sess][-nb_frames:]
misc = ConfigObj(paths['misc'])
misc["sessions"] = Sessions
misc["tasks"] = AllReg
misc['mask_url'] = paths['mask']
misc[model_id]={}
misc.write()
# step 2. Create one design matrix for each session
design_matrices = {}
for sess in Sessions:
design_matrices[sess] = glm_tools.design_matrix(
paths['misc'], paths['dmtx'][sess], sess, None,
frametimes, drift_model=drift_model, hfcut=hfcut,
model=model_id, add_regs=reg_matrix, add_reg_names=Reg[sess] )
# step 3. Compute the Mask
# fixme : it should be possible to provide a pre-computed mask
if side=='False':
print "Computing the Mask"
mask_array = compute_mask_files( paths['fmri'].values()[0][0],
paths['mask'], True, infTh, supTh)
# step 4. Creating Contrast File
print "Creating Contrasts"
clist = contrast_tools.ContrastList(
misc=ConfigObj(paths['misc']), model=model_id)
d = clist.dic
d["ring"] = d['effect_of_interest'].copy()
d['ring']['ima1'] = np.zeros((2,6))
d['ring']['ima2'] = np.zeros((2,6))
d["wedge"] = d['effect_of_interest'].copy()
d['wedge']['ima3'] = np.zeros((2,6))
d['wedge']['ima4'] = np.zeros((2,6))
contrast = clist.save_dic(paths['contrast_file'])
if side=='False':
CompletePaths = glm_tools.generate_brainvisa_ouput_paths(
paths["contrasts"], contrast)
else:
CompletePaths = cortical_glm.generate_brainvisa_ouput_paths(
paths["contrasts"], contrast, side)
# step 5. Fit the glm for each session
glms = {}
for sess in Sessions:
print "Fitting GLM for session : %s" % sess
if side=='False':
glms[sess] = glm_tools.glm_fit(
paths['fmri'][sess], design_matrices[sess],
paths['glm_dump'][sess], paths['glm_config'][sess],
fit_algo, paths['mask'])
else:
glms[sess] = cortical_glm.glm_fit(
paths['fmri'][sess], design_matrices[sess],
paths['glm_dump'][sess], paths['glm_config'][sess],
fit_algo)
#step 6. Compute Contrasts
print "Computing contrasts"
if side=='False':
glm_tools.compute_contrasts(
contrast, misc, CompletePaths, glms, model=model_id)
else:
cortical_glm.compute_contrasts(
contrast, misc, CompletePaths, glms, model=model_id)
|