1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Script that perform the first-level analysis of a dataset of the localizer
Here the analysis is perfomed on the cortical of one hemisphere.
Author : Lise Favre, Bertrand Thirion, 2008-2010
"""
import os
from numpy import arange
from nipy.externals.configobj import ConfigObj
from nipy.neurospin.glm_files_layout import (glm_tools,
contrast_tools,
cortical_glm)
# -----------------------------------------------------------
# --------- Set the paths -----------------------------------
#-----------------------------------------------------------
DBPath = "/neurospin/lnao/Pmad/alan/subjfreesurfer"
Subjects = ['s12069']#['s12300', 's12401', 's12431', 's12508', 's12532', 's12539', 's12562','s12590', 's12635', 's12636', 's12898', 's12913', 's12919', 's12920']
Acquisitions = [""]
Sessions = ["loc1"]
model_id = "default"
side = 'right'
fmri_wc = "rh*.tex"
if side=='left':
fmri_wc = "lh*.tex"
# ---------------------------------------------------------
# -------- General Information ----------------------------
# ---------------------------------------------------------
tr = 2.4
nb_frames = 128
frametimes = arange(nb_frames) * tr
Conditions = [ 'damier_H', 'damier_V', 'clicDaudio', 'clicGaudio',
'clicDvideo', 'clicGvideo', 'calculaudio', 'calculvideo', 'phrasevideo',
'phraseaudio' ]
# ---------------------------------------------------------
# ------ First level analysis parameters ---------------------
# ---------------------------------------------------------
#---------- Masking parameters
infTh = 0.4
supTh = 0.9
#---------- Design Matrix
# Possible choices for hrfType : "Canonical", \
# "Canonical With Derivative" or "FIR"
hrf_model = "Canonical With Derivative"
# Possible choices for drift : "Blank", "Cosine", "Polynomial"
drift_model = "Cosine"
hfcut = 128
#-------------- GLM options
# Possible choices : "Kalman_AR1", "Kalman", "Ordinary Least Squares"
fit_algo = "Kalman_AR1"
def generate_localizer_contrasts(contrast):
"""
This utility appends standard localizer contrasts
to the input contrast structure
Parameters
----------
contrast: configObj
that contains the automatically generated contarsts
Caveat
------
contrast is changed in place
"""
d = contrast.dic
d["audio"] = d["clicDaudio"] + d["clicGaudio"] +\
d["calculaudio"] + d["phraseaudio"]
d["video"] = d["clicDvideo"] + d["clicGvideo"] + \
d["calculvideo"] + d["phrasevideo"]
d["left"] = d["clicGaudio"] + d["clicGvideo"]
d["right"] = d["clicDaudio"] + d["clicDvideo"]
d["computation"] = d["calculaudio"] +d["calculvideo"]
d["sentences"] = d["phraseaudio"] + d["phrasevideo"]
d["H-V"] = d["damier_H"] - d["damier_V"]
d["V-H"] =d["damier_V"] - d["damier_H"]
d["left-right"] = d["left"] - d["right"]
d["right-left"] = d["right"] - d["left"]
d["audio-video"] = d["audio"] - d["video"]
d["video-audio"] = d["video"] - d["audio"]
d["computation-sentences"] = d["computation"] - d["sentences"]
d["reading-visual"] = d["sentences"]*2 - d["damier_H"] - d["damier_V"]
# ------------------------------------------------------------------
# Launching Pipeline on all subjects, all acquisitions, all sessions
# -------------------------------------------------------------------
# Treat sequentially all subjects & acquisitions
for s in Subjects:
print "Subject : %s" % s
for a in Acquisitions:
# step 1. set all the paths
basePath = os.sep.join((DBPath, s, "fct", a))
paths = cortical_glm.generate_all_brainvisa_paths(
basePath, Sessions, fmri_wc, model_id)
misc = ConfigObj(paths['misc'])
misc["sessions"] = Sessions
misc["tasks"] = Conditions
misc.write()
# step 2. Create one design matrix for each session
design_matrices = {}
for sess in Sessions:
design_matrices[sess] = glm_tools.design_matrix(
paths['misc'], paths['dmtx'][sess], sess, paths['paradigm'],
frametimes, hrf_model=hrf_model, drift_model=drift_model,
hfcut=hfcut, model=model_id)
# step 4. Creating functional contrasts
print "Creating Contrasts"
clist = contrast_tools.ContrastList(
misc=ConfigObj(paths['misc']), model=model_id)
generate_localizer_contrasts(clist)
contrast = clist.save_dic(paths['contrast_file'])
CompletePaths = cortical_glm.generate_brainvisa_ouput_paths(
paths["contrasts"], contrast, side)
# step 5. Fit the glm for each session
glms = {}
for sess in Sessions:
print "Fitting GLM for session : %s" % sess
glms[sess] = cortical_glm.glm_fit(
paths['fmri'][sess], design_matrices[sess],
paths['glm_dump'][sess], paths['glm_config'][sess], fit_algo)
#step 6. Compute Contrasts
print "Computing contrasts"
cortical_glm.compute_contrasts(
contrast, misc, CompletePaths, glms, model=model_id)
|