File: script_surface_localizer.py

package info (click to toggle)
nipy 0.1.2%2B20100526-2
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 11,992 kB
  • ctags: 13,434
  • sloc: python: 47,720; ansic: 41,334; makefile: 197
file content (152 lines) | stat: -rw-r--r-- 5,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Script that perform the first-level analysis of a dataset of the localizer
Here the analysis is perfomed on the cortical of one hemisphere.


Author : Lise Favre, Bertrand Thirion, 2008-2010
"""
import os

from numpy import arange

from nipy.externals.configobj import ConfigObj

from nipy.neurospin.glm_files_layout import (glm_tools,
                                             contrast_tools,
                                             cortical_glm)

# -----------------------------------------------------------
# --------- Set the paths -----------------------------------
#-----------------------------------------------------------

DBPath = "/neurospin/lnao/Pmad/alan/subjfreesurfer"
Subjects = ['s12069']#['s12300', 's12401', 's12431', 's12508', 's12532', 's12539', 's12562','s12590', 's12635', 's12636', 's12898', 's12913', 's12919', 's12920']
Acquisitions = [""]
Sessions = ["loc1"]
model_id = "default"
side = 'right'
fmri_wc = "rh*.tex"
if side=='left':
    fmri_wc = "lh*.tex"


# ---------------------------------------------------------
# -------- General Information ----------------------------
# ---------------------------------------------------------

tr = 2.4
nb_frames = 128
frametimes = arange(nb_frames) * tr

Conditions = [ 'damier_H', 'damier_V', 'clicDaudio', 'clicGaudio', 
'clicDvideo', 'clicGvideo', 'calculaudio', 'calculvideo', 'phrasevideo', 
'phraseaudio' ]


# ---------------------------------------------------------
# ------ First level analysis parameters ---------------------
# ---------------------------------------------------------

#---------- Masking parameters 
infTh = 0.4
supTh = 0.9

#---------- Design Matrix

# Possible choices for hrfType : "Canonical", \
# "Canonical With Derivative" or "FIR"
hrf_model = "Canonical With Derivative"

# Possible choices for drift : "Blank", "Cosine", "Polynomial"
drift_model = "Cosine"
hfcut = 128

#-------------- GLM options
# Possible choices : "Kalman_AR1", "Kalman", "Ordinary Least Squares"
fit_algo = "Kalman_AR1"


def generate_localizer_contrasts(contrast):
    """
    This utility appends standard localizer contrasts
    to the input contrast structure

    Parameters
    ----------
    contrast: configObj
        that contains the automatically generated contarsts

    Caveat
    ------
    contrast is changed in place
    """
    d = contrast.dic
    d["audio"] = d["clicDaudio"] + d["clicGaudio"] +\
                 d["calculaudio"] + d["phraseaudio"]
    d["video"] = d["clicDvideo"] + d["clicGvideo"] + \
                 d["calculvideo"] + d["phrasevideo"]
    d["left"] = d["clicGaudio"] + d["clicGvideo"]
    d["right"] = d["clicDaudio"] + d["clicDvideo"] 
    d["computation"] = d["calculaudio"] +d["calculvideo"]
    d["sentences"] = d["phraseaudio"] + d["phrasevideo"]
    d["H-V"] = d["damier_H"] - d["damier_V"]
    d["V-H"] =d["damier_V"] - d["damier_H"]
    d["left-right"] = d["left"] - d["right"]
    d["right-left"] = d["right"] - d["left"]
    d["audio-video"] = d["audio"] - d["video"]
    d["video-audio"] = d["video"] - d["audio"]
    d["computation-sentences"] = d["computation"] - d["sentences"]
    d["reading-visual"] = d["sentences"]*2 - d["damier_H"] - d["damier_V"]
    
# ------------------------------------------------------------------
# Launching Pipeline on all subjects, all acquisitions, all sessions 
# -------------------------------------------------------------------

# Treat sequentially all subjects & acquisitions
for s in Subjects:
    print "Subject : %s" % s
    
    for a in Acquisitions:
        # step 1. set all the paths
        basePath = os.sep.join((DBPath, s, "fct", a))
        paths = cortical_glm.generate_all_brainvisa_paths(
            basePath, Sessions, fmri_wc, model_id)  
          
        misc = ConfigObj(paths['misc'])
        misc["sessions"] = Sessions
        misc["tasks"] = Conditions
        misc.write()

        # step 2. Create one design matrix for each session
        design_matrices = {}
        for sess in Sessions:
            design_matrices[sess] = glm_tools.design_matrix(
                paths['misc'], paths['dmtx'][sess], sess, paths['paradigm'],
                frametimes, hrf_model=hrf_model, drift_model=drift_model,
                hfcut=hfcut, model=model_id)
                            
        # step 4. Creating functional contrasts
        print "Creating Contrasts"
        clist = contrast_tools.ContrastList(
            misc=ConfigObj(paths['misc']), model=model_id)
        generate_localizer_contrasts(clist)
        contrast = clist.save_dic(paths['contrast_file'])
        CompletePaths = cortical_glm.generate_brainvisa_ouput_paths( 
                        paths["contrasts"],  contrast, side)

        # step 5. Fit the  glm for each session
        glms = {}
        for sess in Sessions:
            print "Fitting GLM for session : %s" % sess
            glms[sess] = cortical_glm.glm_fit(
                paths['fmri'][sess], design_matrices[sess],
                paths['glm_dump'][sess], paths['glm_config'][sess], fit_algo)
            
        #step 6. Compute Contrasts
        print "Computing contrasts"
        cortical_glm.compute_contrasts(
            contrast, misc, CompletePaths, glms, model=model_id)