1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
#include "fff_base.h"
#include "fff_vector.h"
#include "fff_array.h"
#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <errno.h>
/* Declaration of static functions */
static double _fff_pth_element(double* x, size_t p, size_t stride, size_t size);
static void _fff_pth_interval(double* am, double* aM,
double* x, size_t p, size_t stride, size_t size);
/* Constructor */
fff_vector* fff_vector_new(size_t size)
{
fff_vector* thisone;
thisone = (fff_vector*)calloc(1, sizeof(fff_vector));
if (thisone == NULL) {
FFF_ERROR("Allocation failed", ENOMEM);
return NULL;
}
thisone->data = (double*)calloc(size, sizeof(double));
if (thisone->data == NULL)
FFF_ERROR("Allocation failed", ENOMEM);
thisone->size = size;
thisone->stride = 1;
thisone->owner = 1;
return thisone;
}
/* Destructor */
void fff_vector_delete(fff_vector* thisone)
{
if (thisone->owner)
if (thisone->data != NULL)
free(thisone->data);
free(thisone);
return;
}
/* View */
fff_vector fff_vector_view(const double* data, size_t size, size_t stride)
{
fff_vector x;
x.size = size;
x.stride = stride;
x.owner = 0;
x.data = (double*)data;
return x;
}
#define CHECK_SIZE(x,y) \
if ((x->size) != (y->size)) FFF_ERROR("Vectors have different sizes", EDOM)
/* Vector copy. If both vectors are contiguous in memory, we use
memcpy, otherwise we perform a loop */
void fff_vector_memcpy(fff_vector* x, const fff_vector* y)
{
CHECK_SIZE(x, y);
if ((x->stride == 1) && (y->stride == 1))
memcpy((void*)x->data, (void*)y->data, x->size*sizeof(double));
else {
size_t i;
double *bx, *by;
for(i=0, bx=x->data, by=y->data; i<x->size; i++, bx+=x->stride, by+=y->stride)
*bx = *by;
}
return;
}
/* Copy buffer with arbitrary type */
void fff_vector_fetch(fff_vector* x, const void* data, fff_datatype datatype, size_t stride)
{
fff_array a = fff_array_view1d(datatype, (void*)data, x->size, stride);
fff_array b = fff_array_view1d(FFF_DOUBLE, x->data, x->size, x->stride);
fff_array_copy(&b, &a);
return;
}
/* Get an element */
double fff_vector_get (const fff_vector * x, size_t i)
{
return(x->data[ i * x->stride ]);
}
/* Set an element */
void fff_vector_set (fff_vector * x, size_t i, double a)
{
x->data[ i * x->stride ] = a;
return;
}
/* Set all elements */
void fff_vector_set_all (fff_vector * x, double a)
{
size_t i;
double *buf;
for(i=0, buf=x->data; i<x->size; i++, buf+=x->stride)
*buf = a;
return;
}
/* Add two vectors */
void fff_vector_add (fff_vector * x, const fff_vector * y)
{
size_t i;
double *bx, *by;
CHECK_SIZE(x, y);
for(i=0, bx=x->data, by=y->data; i<x->size; i++, bx+=x->stride, by+=y->stride)
*bx += *by;
return;
}
/* Compute: x = x - y */
void fff_vector_sub (fff_vector * x, const fff_vector * y)
{
size_t i;
double *bx, *by;
CHECK_SIZE(x, y);
for(i=0, bx=x->data, by=y->data; i<x->size; i++, bx+=x->stride, by+=y->stride)
*bx -= *by;
return;
}
/* Element-wise product */
void fff_vector_mul (fff_vector * x, const fff_vector * y)
{
size_t i;
double *bx, *by;
CHECK_SIZE(x, y);
for(i=0, bx=x->data, by=y->data; i<x->size; i++, bx+=x->stride, by+=y->stride)
*bx *= *by;
return;
}
/* Element-wise division */
void fff_vector_div (fff_vector * x, const fff_vector * y)
{
size_t i;
double *bx, *by;
CHECK_SIZE(x, y);
for(i=0, bx=x->data, by=y->data; i<x->size; i++, bx+=x->stride, by+=y->stride)
*bx /= *by;
return;
}
/* Scale by a constant */
void fff_vector_scale (fff_vector * x, double a)
{
size_t i;
double *bx;
for(i=0, bx=x->data; i<x->size; i++, bx+=x->stride)
*bx *= a;
return;
}
/* Add a constant */
void fff_vector_add_constant (fff_vector * x, double a)
{
size_t i;
double *bx;
for(i=0, bx=x->data; i<x->size; i++, bx+=x->stride)
*bx += a;
return;
}
/* Sum up elements */
long double fff_vector_sum(const fff_vector* x)
{
long double sum = 0.0;
double* buf = x->data;
size_t i;
for(i=0; i<x->size; i++, buf+=x->stride)
sum += *buf;
return sum;
}
/* Mean */
double fff_vector_mean(const fff_vector* x) {
return((double)(fff_vector_sum(x) / (double)x->size));
}
/* SSD
We use Konig formula:
SUM[(x-a)^2] = SUM[(x-m)^2] + n*(a-m)^2
where m is the mean.
*/
long double fff_vector_ssd(const fff_vector* x, double* m, int fixed_offset)
{
long double ssd = 0.0;
long double sum = 0.0;
long double n = (long double)x->size;
double aux;
double* buf = x->data;
size_t i;
for(i=0; i<x->size; i++, buf+=x->stride) {
aux = *buf;
sum += aux;
ssd += FFF_SQR(aux);
}
sum /= n;
if (fixed_offset) {
aux = *m - sum;
ssd += n * (FFF_SQR(aux) - FFF_SQR(sum));
}
else{
*m = sum;
ssd -= n * FFF_SQR(sum);
}
return ssd;
}
long double fff_vector_wsum(const fff_vector* x, const fff_vector* w, long double* sumw)
{
long double wsum=0.0, aux=0.0;
double *bufx=x->data, *bufw=w->data;
size_t i;
CHECK_SIZE(x, w);
for(i=0; i<x->size; i++, bufx+=x->stride, bufw+=w->stride) {
wsum += (*bufw) * (*bufx);
aux += *bufw;
}
*sumw = aux;
return wsum;
}
long double fff_vector_sad(const fff_vector* x, double m)
{
long double sad=0.0;
double aux;
double *buf=x->data;
size_t i;
for(i=0; i<x->size; i++, buf+=x->stride) {
aux = *buf-m;
sad += FFF_ABS(aux);
}
return sad;
}
/* Median (modify input vector) */
double fff_vector_median(fff_vector* x)
{
double m;
double* data = x->data;
size_t stride = x->stride, size = x->size;
if (FFF_IS_ODD(size))
m = _fff_pth_element(data, size>>1, stride, size);
else{
double mm;
_fff_pth_interval(&m, &mm, data, (size>>1)-1, stride, size);
m = .5*(m+mm);
}
return m;
}
/*
Quantile.
Given a sample x, this function computes a value q so that the
number of sample values that are greater or equal to q is smaller
or equal to (1-r) * sample size.
*/
double fff_vector_quantile(fff_vector* x, double r, int interp)
{
double m, pp;
double* data = x->data;
size_t p, stride = x->stride, size = x->size;
if ((r<0) || (r>1)){
FFF_WARNING("Ratio must be in [0,1], returning zero");
return 0.0;
}
if (size == 1)
return data[0];
/* Find the smallest index p so that p >= r * size */
if (!interp) {
pp = r * size;
p = FFF_UNSIGNED_CEIL(pp);
if (p == size)
return FFF_POSINF;
m = _fff_pth_element(data, p, stride, size);
}
else {
double wm, wM;
pp = r * (size-1);
p = FFF_UNSIGNED_FLOOR(pp);
wM = pp - (double)p;
wm = 1.0 - wM;
if (wM <= 0)
m = _fff_pth_element(data, p, stride, size);
else {
double am, aM;
_fff_pth_interval(&am, &aM, data, p, stride, size);
m = wm*am + wM*aM;
}
}
return m;
}
/*** STATIC FUNCTIONS ***/
/* BEWARE: the input array x gets modified! */
/*
Pick up the sample value a so that:
(p+1) sample values are <= a AND the remaining sample values are >= a
*/
#define SWAP(a, b) {tmp=(a); (a)=(b); (b)=tmp;}
static double _fff_pth_element(double* x, size_t p, size_t stride, size_t n)
{
double a, tmp;
double *bufl, *bufr;
size_t i, j, il, jr, stop1, stop2;
int same_extremities;
stop1 = 0;
il = 0;
jr = n-1;
while (stop1 == 0) {
same_extremities = 0;
bufl = x + stride*il;
bufr = x + stride*jr;
if (*bufl > *bufr)
SWAP(*bufl, *bufr)
else if (*bufl == *bufr)
same_extremities = 1;
a = *bufl;
if (il == jr)
return a;
bufl += stride;
i = il + 1;
j = jr;
stop2 = 0;
while (stop2 == 0) {
while (*bufl < a) {
i ++;
bufl += stride;
}
while (*bufr > a) {
j --;
bufr -= stride;
}
if (j <= i)
stop2 = 1;
else {
SWAP(*bufl, *bufr)
j --; bufr -= stride;
i ++; bufl += stride;
}
/* Avoids infinite loops in samples with redundant values.
This situation can only occur with i == j */
if ((same_extremities) && (j==jr)) {
j --;
bufr -= stride;
SWAP(x[il*stride], *bufr)
stop2 = 1;
}
}
/* At this point, we know that il <= j <= i; moreover:
if k <= j, x(j) <= a and if k > j, x(j) >= a
if k < i, x(i) <= a and if k >= i, x(i) >= a
We hence have: (j+1) values <= a and the remaining (n-j-1) >= a
i values <= a and the remaining (n-i) >= a
*/
if (j > p)
jr = j;
else if (j < p)
il = i;
else /* j == p */
stop1 = 1;
}
return a;
}
/* BEWARE: the input array x gets modified! */
static void _fff_pth_interval(double* am, double* aM,
double* x, size_t p, size_t stride, size_t n)
{
double a, tmp;
double *bufl, *bufr;
size_t i, j, il, jr, stop1, stop2, stop3;
size_t pp = p+1;
int same_extremities = 0;
*am = 0.0;
*aM = 0.0;
stop1 = 0;
stop2 = 0;
il = 0;
jr = n-1;
while ((stop1 == 0) || (stop2 == 0)) {
same_extremities = 0;
bufl = x + stride*il;
bufr = x + stride*jr;
if (*bufl > *bufr)
SWAP(*bufl, *bufr)
else if (*bufl == *bufr)
same_extremities = 1;
a = *bufl;
if (il == jr) {
*am=a;
*aM=a;
return;
}
bufl += stride;
i = il + 1;
j = jr;
stop3 = 0;
while (stop3 == 0) {
while (*bufl < a) {
i ++;
bufl += stride;
}
while (*bufr > a) {
j --;
bufr -= stride;
}
if (j <= i)
stop3 = 1;
else {
SWAP(*bufl, *bufr)
j --; bufr -= stride;
i ++; bufl += stride;
}
/* Avoids infinite loops in samples with redundant values */
if ((same_extremities) && (j==jr)) {
j --;
bufr -= stride;
SWAP(x[il*stride], *bufr)
stop3 = 1;
}
}
/* At this point, we know that there are (j+1) datapoints <=a
including a itself, and another (n-j-1) datapoints >=a */
if (j > pp)
jr = j;
else if (j < p)
il = i;
/* Case: found percentile at p */
else if (j == p) {
il = i;
*am = a;
stop1 = 1;
}
/* Case: found percentile at (p+1), ie j==(p+1) */
else {
jr = j;
*aM = a;
stop2 = 1;
}
}
return;
}
/*
Sort x by ascending order and reorder w accordingly.
*/
double fff_vector_wmedian_from_sorted_data (const fff_vector* x_sorted,
const fff_vector* w)
{
size_t i;
double mu, sumW, WW, WW_prev, xx, xx_prev, ww;
double *bxx, *bww;
/* Compute the sum of weights */
sumW = (double) fff_vector_sum(w);
if (sumW <= 0.0)
return FFF_NAN;
/* Find the smallest index such that the cumulative density > 0.5 */
i = 0;
xx = FFF_NEGINF;
WW = 0.0;
bxx = x_sorted->data;
bww = w->data;
while (WW <= .5) {
xx_prev = xx;
WW_prev = WW;
xx = *bxx;
ww = *bww / sumW;
WW += ww;
i ++;
bxx += x_sorted->stride;
bww += w->stride;
}
/* Linearly interpolated median */
if (i == 1)
mu = xx;
else
mu = .5*(xx_prev+xx) + (.5-WW_prev)*(xx-xx_prev)/ww;
return mu;
}
|