File: control

package info (click to toggle)
nipy 0.4.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 13,128 kB
  • sloc: python: 45,886; ansic: 30,932; makefile: 253; sh: 53
file content (84 lines) | stat: -rw-r--r-- 3,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Source: nipy
Section: python
Priority: extra
Maintainer: NeuroDebian Team <team@neuro.debian.net>
Uploaders: Yaroslav Halchenko <debian@onerussian.com>, Michael Hanke <michael.hanke@gmail.com>
Build-Depends: debhelper (>=9), python-all-dev (>= 2.5),
               python-scipy (>= 0.5), python-numpy (>= 1:1.2), python-matplotlib (>= 0.98.3),
               python-sphinx (>= 0.6), cython,
               python-numpydoc,
               python-nibabel, python-nose, python-sympy (>= 0.6.6),
               liblapack-dev,
               python-all-dbg, python-numpy-dbg, python-scipy-dbg, cython-dbg,
               graphviz, dvipng,
               help2man,
Standards-Version: 4.1.2
Homepage: http://neuroimaging.scipy.org
Vcs-Browser: https://salsa.debian.org/neurodebian-team/nipy
Vcs-Git: https://salsa.debian.org/neurodebian-team/nipy -b debian


Package: python-nipy
Architecture: all
Depends: ${shlibs:Depends}, ${misc:Depends}, ${python:Depends},
         python-scipy, python-numpy (>= 1:1.2),
         python-nibabel,
         python-nipy-lib (>= ${source:Version}),
Recommends: python-matplotlib,
         mayavi2,
         python-sympy,
Suggests: python-mvpa
Provides: ${python:Provides}
XB-Python-Version: ${python:Versions}
Description: Analysis of structural and functional neuroimaging data
 NiPy is a Python-based framework for the analysis of structural and
 functional neuroimaging data.  It provides functionality for
  - General linear model (GLM) statistical analysis
  - Combined slice time correction and motion correction
  - General image registration routines with flexible cost functions,
    optimizers and re-sampling schemes
  - Image segmentation
  - Basic visualization of results in 2D and 3D
  - Basic time series diagnostics
  - Clustering and activation pattern analysis across subjects
  - Reproducibility analysis for group studies


Package: python-nipy-lib
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}, ${python:Depends}
Provides: ${python:Provides}
XB-Python-Version: ${python:Versions}
Description: Analysis of structural and functional neuroimaging data
 NiPy is a Python-based framework for the analysis of structural and
 functional neuroimaging data.
 .
 This package provides architecture-dependent builds of the libraries.


Package: python-nipy-lib-dbg
Architecture: any
Section: debug
Depends: ${shlibs:Depends}, ${misc:Depends}, ${python:Depends},
         python-nipy-lib (= ${binary:Version})
Provides: ${python:Provides}
XB-Python-Version: ${python:Versions}
Description: Analysis of structural and functional neuroimaging data
 NiPy is a Python-based framework for the analysis of structural and
 functional neuroimaging data.
 .
 This package provides debugging symbols for architecture-dependent
 builds of the libraries.


Package: python-nipy-doc
Architecture: all
Section: doc
Depends: ${misc:Depends}, libjs-jquery, libjs-underscore
Recommends: python-nipy
Description: documentation and examples for NiPy
 This package contains NiPy documentation in various formats (HTML,
 TXT) including
  * User manual
  * Developer guidelines
  * API documentation