1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
Example of a demo that fits a Gaussian Mixture Model (GMM) to a dataset The
possible number of clusters is in the [1,10] range The proposed algorithm
correctly selects a solution with 2 or 3 classes
Requires matplotlib
Author : Bertrand Thirion, 2008-2009
"""
print(__doc__)
import numpy as np
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
from nipy.algorithms.clustering import gmm
dim = 2
# 1. generate a 3-components mixture
x1 = np.random.randn(100, dim)
x2 = 3 + 2 * np.random.randn(50, dim)
x3 = np.repeat(np.array([- 2, 2], ndmin=2), 30, 0) \
+ 0.5 * np.random.randn(30, dim)
x = np.concatenate((x1, x2, x3))
# 2. fit the mixture with a bunch of possible models
krange = range(1, 5)
lgmm = gmm.best_fitting_GMM(x, krange, prec_type='diag', niter=100,
delta=1.e-4, ninit=1, verbose=0)
# 3, plot the result
z = lgmm.map_label(x)
gmm.plot2D(x, lgmm, z, verbose=0)
plt.show()
|