File: gaussian_mixture_models.py

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (40 lines) | stat: -rwxr-xr-x 1,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
Example of a demo that fits a Gaussian Mixture Model (GMM) to  a dataset The
possible number of clusters is in the [1,10] range The proposed algorithm
correctly selects a solution with 2 or 3 classes

Requires matplotlib

Author : Bertrand Thirion, 2008-2009
"""
print(__doc__)

import numpy as np

try:
    import matplotlib.pyplot as plt
except ImportError:
    raise RuntimeError("This script needs the matplotlib library")

from nipy.algorithms.clustering import gmm

dim = 2
# 1. generate a 3-components mixture
x1 = np.random.randn(100, dim)
x2 = 3 + 2 * np.random.randn(50, dim)
x3 = np.repeat(np.array([- 2, 2], ndmin=2), 30, 0) \
     + 0.5 * np.random.randn(30, dim)
x = np.concatenate((x1, x2, x3))

# 2. fit the mixture with a bunch of possible models
krange = range(1, 5)
lgmm = gmm.best_fitting_GMM(x, krange, prec_type='diag', niter=100,
                            delta=1.e-4, ninit=1, verbose=0)

# 3, plot the result
z = lgmm.map_label(x)
gmm.plot2D(x, lgmm, z, verbose=0)
plt.show()