File: fiac_example.py

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (512 lines) | stat: -rw-r--r-- 19,026 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""Example analyzing the FIAC dataset with NIPY.

* Single run models with per-voxel AR(1).
* Cross-run, within-subject models with optimal effect estimates.
* Cross-subject models using fixed / random effects variance ratios.
* Permutation testing for inference on cross-subject result.

See ``parallel_run.py`` for a rig to run these analysis in parallel using the
IPython parallel machinery.

This script needs the pre-processed FIAC data.  See ``README.txt`` and
``fiac_util.py`` for details.

See ``examples/labs/need_data/first_level_fiac.py`` for an alternative approach
to some of these analyses.
"""
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------

# Stdlib
import warnings
from copy import copy
from os.path import join as pjoin
from tempfile import NamedTemporaryFile

# Local
import fiac_util as futil

# Third party
import numpy as np

from nipy.algorithms.statistics import onesample

# From NIPY
from nipy.algorithms.statistics.api import ARModel, OLSModel, isestimable, make_recarray
from nipy.core import api
from nipy.core.api import Image
from nipy.core.image.image import rollimg
from nipy.io.api import load_image, save_image
from nipy.modalities.fmri import design, hrf
from nipy.modalities.fmri.fmristat import hrf as delay

reload(futil)  # while developing interactively

#-----------------------------------------------------------------------------
# Globals
#-----------------------------------------------------------------------------

SUBJECTS = tuple(range(5) + range(6, 16)) # No data for subject 5
RUNS = tuple(range(1, 5))
DESIGNS = ('event', 'block')
CONTRASTS = ('speaker_0', 'speaker_1',
             'sentence_0', 'sentence_1',
             'sentence:speaker_0',
             'sentence:speaker_1')

GROUP_MASK = futil.load_image_fiac('group', 'mask.nii')
TINY_MASK = np.zeros(GROUP_MASK.shape, np.bool_)
TINY_MASK[30:32,40:42,30:32] = 1

#-----------------------------------------------------------------------------
# Public functions
#-----------------------------------------------------------------------------

# For group analysis

def run_model(subj, run):
    """
    Single subject fitting of FIAC model
    """
    #----------------------------------------------------------------------
    # Set initial parameters of the FIAC dataset
    #----------------------------------------------------------------------
    # Number of volumes in the fMRI data
    nvol = 191
    # The TR of the experiment
    TR = 2.5
    # The time of the first volume
    Tstart = 0.0
    # The array of times corresponding to each volume in the fMRI data
    volume_times = np.arange(nvol) * TR + Tstart
    # This recarray of times has one column named 't'.  It is used in the
    # function design.event_design to create the design matrices.
    volume_times_rec = make_recarray(volume_times, 't')
    # Get a path description dictionary that contains all the path data relevant
    # to this subject/run
    path_info = futil.path_info_run(subj,run)

    #----------------------------------------------------------------------
    # Experimental design
    #----------------------------------------------------------------------

    # Load the experimental description from disk.  We have utilities in futil
    # that reformat the original FIAC-supplied format into something where the
    # factorial structure of the design is more explicit.  This has already
    # been run once, and get_experiment_initial() will simply load the
    # newly-formatted design description files (.csv) into record arrays.
    experiment, initial = futil.get_experiment_initial(path_info)

    # Create design matrices for the "initial" and "experiment" factors, saving
    # the default contrasts.

    # The function event_design will create design matrices, which in the case
    # of "experiment" will have num_columns = (# levels of speaker) * (# levels
    # of sentence) * len(delay.spectral) = 2 * 2 * 2 = 8. For "initial", there
    # will be (# levels of initial) * len([hrf.glover]) = 1 * 1 = 1.

    # Here, delay.spectral is a sequence of 2 symbolic HRFs that are described
    # in:
    #
    # Liao, C.H., Worsley, K.J., Poline, J-B., Aston, J.A.D., Duncan, G.H.,
    #    Evans, A.C. (2002). \'Estimating the delay of the response in fMRI
    #    data.\' NeuroImage, 16:593-606.

    # The contrast definitions in ``cons_exper`` are a dictionary with keys
    # ['constant_0', 'constant_1', 'speaker_0', 'speaker_1', 'sentence_0',
    # 'sentence_1', 'sentence:speaker_0', 'sentence:speaker_1'] representing the
    # four default contrasts: constant, main effects + interactions, each
    # convolved with 2 HRFs in delay.spectral. For example, sentence:speaker_0
    # is the interaction of sentence and speaker convolved with the first (=0)
    # of the two HRF basis functions, and sentence:speaker_1 is the interaction
    # convolved with the second (=1) of the basis functions.

    # XXX use the hrf __repr__ for naming contrasts
    X_exper, cons_exper = design.event_design(experiment, volume_times_rec,
                                              hrfs=delay.spectral)

    # The contrasts for 'initial' are ignored as they are "uninteresting" and
    # are included in the model as confounds.
    X_initial, _ = design.event_design(initial, volume_times_rec,
                                       hrfs=[hrf.glover])

    # In addition to factors, there is typically a "drift" term. In this case,
    # the drift is a natural cubic spline with a not at the midpoint
    # (volume_times.mean())
    vt = volume_times # shorthand
    drift = np.array( [vt**i for i in range(4)] +
                      [(vt-vt.mean())**3 * (np.greater(vt, vt.mean()))] )
    for i in range(drift.shape[0]):
        drift[i] /= drift[i].max()

    # We transpose the drift so that its shape is (nvol,5) so that it will have
    # the same number of rows as X_initial and X_exper.
    drift = drift.T

    # There are helper functions to create these drifts: design.fourier_basis,
    # design.natural_spline.  Therefore, the above is equivalent (except for
    # the normalization by max for numerical stability) to
    #
    # >>> drift = design.natural_spline(t, [volume_times.mean()])

    # Stack all the designs, keeping the new contrasts which has the same keys
    # as cons_exper, but its values are arrays with 15 columns, with the
    # non-zero entries matching the columns of X corresponding to X_exper
    X, cons = design.stack_designs((X_exper, cons_exper),
                                   (X_initial, {}),
                                   (drift, {}))

    # Sanity check: delete any non-estimable contrasts
    for k in cons:
        if not isestimable(cons[k], X):
            del(cons[k])
            warnings.warn(f"contrast {k} not estimable for this run")

    # The default contrasts are all t-statistics.  We may want to output
    # F-statistics for 'speaker', 'sentence', 'speaker:sentence' based on the
    # two coefficients, one for each HRF in delay.spectral

    cons['speaker'] = np.vstack([cons['speaker_0'], cons['speaker_1']])
    cons['sentence'] = np.vstack([cons['sentence_0'], cons['sentence_1']])
    cons['sentence:speaker'] = np.vstack([cons['sentence:speaker_0'],
                                          cons['sentence:speaker_1']])

    #----------------------------------------------------------------------
    # Data loading
    #----------------------------------------------------------------------

    # Load in the fMRI data, saving it as an array.  It is transposed to have
    # time as the first dimension, i.e. fmri[t] gives the t-th volume.
    fmri_im = futil.get_fmri(path_info) # an Image
    fmri_im = rollimg(fmri_im, 't')
    fmri = fmri_im.get_fdata() # now, it's an ndarray

    nvol, volshape = fmri.shape[0], fmri.shape[1:]
    nx, sliceshape = volshape[0], volshape[1:]

    #----------------------------------------------------------------------
    # Model fit
    #----------------------------------------------------------------------

    # The model is a two-stage model, the first stage being an OLS (ordinary
    # least squares) fit, whose residuals are used to estimate an AR(1)
    # parameter for each voxel.
    m = OLSModel(X)
    ar1 = np.zeros(volshape)

    # Fit the model, storing an estimate of an AR(1) parameter at each voxel
    for s in range(nx):
        d = np.array(fmri[:,s])
        flatd = d.reshape((d.shape[0], -1))
        result = m.fit(flatd)
        ar1[s] = ((result.resid[1:] * result.resid[:-1]).sum(0) /
                  (result.resid**2).sum(0)).reshape(sliceshape)

    # We round ar1 to nearest one-hundredth and group voxels by their rounded
    # ar1 value, fitting an AR(1) model to each batch of voxels.

    # XXX smooth here?
    # ar1 = smooth(ar1, 8.0)
    ar1 *= 100
    ar1 = ar1.astype(np.int_) / 100.

    # We split the contrasts into F-tests and t-tests.
    # XXX helper function should do this
    fcons = {}; tcons = {}
    for n, v in cons.items():
        v = np.squeeze(v)
        if v.ndim == 1:
            tcons[n] = v
        else:
            fcons[n] = v

    # Setup a dictionary to hold all the output
    # XXX ideally these would be memmap'ed Image instances
    output = {}
    for n in tcons:
        tempdict = {}
        for v in ['sd', 't', 'effect']:
            tempdict[v] = np.memmap(NamedTemporaryFile(prefix=f'{n}{v}.nii'), dtype=np.float64,
                                    shape=volshape, mode='w+')
        output[n] = tempdict

    for n in fcons:
        output[n] = np.memmap(NamedTemporaryFile(prefix=f'{n}{v}.nii'), dtype=np.float64,
                                    shape=volshape, mode='w+')

    # Loop over the unique values of ar1
    for val in np.unique(ar1):
        armask = np.equal(ar1, val)
        m = ARModel(X, val)
        d = fmri[:,armask]
        results = m.fit(d)

        # Output the results for each contrast
        for n in tcons:
            resT = results.Tcontrast(tcons[n])
            output[n]['sd'][armask] = resT.sd
            output[n]['t'][armask] = resT.t
            output[n]['effect'][armask] = resT.effect
        for n in fcons:
            output[n][armask] = results.Fcontrast(fcons[n]).F

    # Dump output to disk
    odir = futil.output_dir(path_info,tcons,fcons)
    # The coordmap for a single volume in the time series
    vol0_map = fmri_im[0].coordmap
    for n in tcons:
        for v in ['t', 'sd', 'effect']:
            im = Image(output[n][v], vol0_map)
            save_image(im, pjoin(odir, n, f'{v}.nii'))
    for n in fcons:
        im = Image(output[n], vol0_map)
        save_image(im, pjoin(odir, n, "F.nii"))


def fixed_effects(subj, design):
    """ Fixed effects (within subject) for FIAC model

    Finds run by run estimated model results, creates fixed effects results
    image per subject.

    Parameters
    ----------
    subj : int
        subject number 0..15 inclusive
    design : {'block', 'event'}
        design type
    """
    # First, find all the effect and standard deviation images
    # for the subject and this design type
    path_dict = futil.path_info_design(subj, design)
    rootdir = path_dict['rootdir']
    # The output directory
    fixdir = pjoin(rootdir, "fixed")
    # Fetch results images from run estimations
    results = futil.results_table(path_dict)
    # Get our hands on the relevant coordmap to save our results
    coordmap = futil.load_image_fiac("fiac_%02d" % subj,
                                     "wanatomical.nii").coordmap
    # Compute the "fixed" effects for each type of contrast
    for con in results:
        fixed_effect = 0
        fixed_var = 0
        for effect, sd in results[con]:
            effect = load_image(effect).get_fdata()
            sd = load_image(sd).get_fdata()
            var = sd ** 2

            # The optimal, in terms of minimum variance, combination of the
            # effects has weights 1 / var
            #
            # XXX regions with 0 variance are set to 0
            # XXX do we want this or np.nan?
            ivar = np.nan_to_num(1. / var)
            fixed_effect += effect * ivar
            fixed_var += ivar

        # Now, compute the fixed effects variance and t statistic
        fixed_sd = np.sqrt(fixed_var)
        isd = np.nan_to_num(1. / fixed_sd)
        fixed_t = fixed_effect * isd

        # Save the results
        odir = futil.ensure_dir(fixdir, con)
        for a, n in zip([fixed_effect, fixed_sd, fixed_t],
                        ['effect', 'sd', 't']):
            im = api.Image(a, copy(coordmap))
            save_image(im, pjoin(odir, f'{n}.nii'))


def group_analysis(design, contrast):
    """ Compute group analysis effect, t, sd for `design` and `contrast`

    Saves to disk in 'group' analysis directory

    Parameters
    ----------
    design : {'block', 'event'}
    contrast : str
        contrast name
    """
    array = np.array # shorthand
    # Directory where output will be written
    odir = futil.ensure_dir(futil.DATADIR, 'group', design, contrast)

    # Which subjects have this (contrast, design) pair?
    subj_con_dirs = futil.subj_des_con_dirs(design, contrast)
    if len(subj_con_dirs) == 0:
        raise ValueError(f'No subjects for {design}, {contrast}')

    # Assemble effects and sds into 4D arrays
    sds = []
    Ys = []
    for s in subj_con_dirs:
        sd_img = load_image(pjoin(s, "sd.nii"))
        effect_img = load_image(pjoin(s, "effect.nii"))
        sds.append(sd_img.get_fdata())
        Ys.append(effect_img.get_fdata())
    sd = array(sds)
    Y = array(Ys)

    # This function estimates the ratio of the fixed effects variance
    # (sum(1/sd**2, 0)) to the estimated random effects variance
    # (sum(1/(sd+rvar)**2, 0)) where rvar is the random effects variance.

    # The EM algorithm used is described in:
    #
    # Worsley, K.J., Liao, C., Aston, J., Petre, V., Duncan, G.H.,
    #    Morales, F., Evans, A.C. (2002). \'A general statistical
    #    analysis for fMRI data\'. NeuroImage, 15:1-15
    varest = onesample.estimate_varatio(Y, sd)
    random_var = varest['random']

    # XXX - if we have a smoother, use
    # random_var = varest['fixed'] * smooth(varest['ratio'])

    # Having estimated the random effects variance (and possibly smoothed it),
    # the corresponding estimate of the effect and its variance is computed and
    # saved.

    # This is the coordmap we will use
    coordmap = futil.load_image_fiac("fiac_00","wanatomical.nii").coordmap

    adjusted_var = sd**2 + random_var
    adjusted_sd = np.sqrt(adjusted_var)

    results = onesample.estimate_mean(Y, adjusted_sd)
    for n in ['effect', 'sd', 't']:
        im = api.Image(results[n], copy(coordmap))
        save_image(im, pjoin(odir, f"{n}.nii"))


def group_analysis_signs(design, contrast, mask, signs=None):
    """ Refit the EM model with a vector of signs.

    Used in the permutation tests.

    Returns the maximum of the T-statistic within mask

    Parameters
    ----------
    design: one of 'block', 'event'
    contrast: str
        name of contrast to estimate
    mask : ``Image`` instance or array-like
        image containing mask, or array-like
    signs: ndarray, optional
         Defaults to np.ones. Should have shape (*,nsubj)
         where nsubj is the number of effects combined in the group analysis.

    Returns
    -------
    minT: np.ndarray, minima of T statistic within mask, one for each
         vector of signs
    maxT: np.ndarray, maxima of T statistic within mask, one for each
         vector of signs
    """
    if api.is_image(mask):
        maska = mask.get_fdata()
    else:
        maska = np.asarray(mask)
    maska = maska.astype(np.bool_)

    # Which subjects have this (contrast, design) pair?
    subj_con_dirs = futil.subj_des_con_dirs(design, contrast)

    # Assemble effects and sds into 4D arrays
    sds = []
    Ys = []
    for s in subj_con_dirs:
        sd_img = load_image(pjoin(s, "sd.nii"))
        effect_img = load_image(pjoin(s, "effect.nii"))
        sds.append(sd_img.get_fdata()[maska])
        Ys.append(effect_img.get_fdata()[maska])
    sd = np.array(sds)
    Y = np.array(Ys)

    if signs is None:
        signs = np.ones((1, Y.shape[0]))

    maxT = np.empty(signs.shape[0])
    minT = np.empty(signs.shape[0])

    for i, sign in enumerate(signs):
        signY = sign[:,np.newaxis] * Y
        varest = onesample.estimate_varatio(signY, sd)
        random_var = varest['random']

        adjusted_var = sd**2 + random_var
        adjusted_sd = np.sqrt(adjusted_var)

        results = onesample.estimate_mean(Y, adjusted_sd)
        T = results['t']
        minT[i], maxT[i] = np.nanmin(T), np.nanmax(T)
    return minT, maxT


def permutation_test(design, contrast, mask=GROUP_MASK, nsample=1000):
    """
    Perform a permutation (sign) test for a given design type and
    contrast. It is a Monte Carlo test because we only sample nsample
    possible sign arrays.

    Parameters
    ----------
    design: str
        one of ['block', 'event']
    contrast : str
        name of contrast to estimate
    mask : ``Image`` instance or array-like, optional
        image containing mask, or array-like
    nsample: int, optional
        number of permutations

    Returns
    -------
    min_vals: np.ndarray
    max_vals: np.ndarray
    """
    subj_con_dirs = futil.subj_des_con_dirs(design, contrast)
    nsubj = len(subj_con_dirs)
    if nsubj == 0:
        raise ValueError(f'No subjects have {design}, {contrast}')
    signs = 2*np.greater(np.random.sample(size=(nsample, nsubj)), 0.5) - 1
    min_vals, max_vals = group_analysis_signs(design, contrast, mask, signs)
    return min_vals, max_vals


def run_run_models(subject_nos=SUBJECTS, run_nos = RUNS):
    """ Simple serial run of all the within-run models """
    for subj in subject_nos:
        for run in run_nos:
            try:
                run_model(subj, run)
            except OSError:
                print('Skipping subject %d, run %d' % (subj, run))


def run_fixed_models(subject_nos=SUBJECTS, designs=DESIGNS):
    """ Simple serial run of all the within-subject models """
    for subj in subject_nos:
        for design in designs:
            try:
                fixed_effects(subj, design)
            except OSError:
                print('Skipping subject %d, design %s' % (subj, design))


def run_group_models(designs=DESIGNS, contrasts=CONTRASTS):
    """ Simple serial run of all the across-subject models """
    for design in designs:
        for contrast in contrasts:
            group_analysis(design, contrast)


if __name__ == '__main__':
    pass
    # Sanity check while debugging
    #permutation_test('block','sentence_0',mask=TINY_MASK,nsample=3)