1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""Support utilities for FIAC example, mostly path management.
The purpose of separating these is to keep the main example code as readable as
possible and focused on the experimental modeling and analysis, rather than on
local file management issues.
Requires matplotlib
"""
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# Stdlib
import csv
import os
from io import StringIO # Python 3
from os import listdir, makedirs
from os.path import abspath, exists, isdir, splitext
from os.path import join as pjoin
# Third party
import numpy as np
import pandas as pd
# From NIPY
from nipy.io.api import load_image
def csv2rec(fname):
return pd.read_csv(fname).to_records()
def rec2csv(recarr, fname):
pd.DataFrame.from_records(recarr).to_csv(fname, index=None)
#-----------------------------------------------------------------------------
# Globals
#-----------------------------------------------------------------------------
# We assume that there is a directory holding the data and it's local to this
# code. Users can either keep a copy here or a symlink to the real location on
# disk of the data.
DATADIR = 'fiac_data'
# Sanity check
if not os.path.isdir(DATADIR):
e=f"The data directory {DATADIR} must exist and contain the FIAC data."
raise OSError(e)
#-----------------------------------------------------------------------------
# Classes and functions
#-----------------------------------------------------------------------------
# Path management utilities
def load_image_fiac(*path):
"""Return a NIPY image from a set of path components.
"""
return load_image(pjoin(DATADIR, *path))
def subj_des_con_dirs(design, contrast, nsub=16):
"""Return a list of subject directories with this `design` and `contrast`
Parameters
----------
design : {'event', 'block'}
contrast : str
nsub : int, optional
total number of subjects
Returns
-------
con_dirs : list
list of directories matching `design` and `contrast`
"""
rootdir = DATADIR
con_dirs = []
for s in range(nsub):
f = pjoin(rootdir, "fiac_%02d" % s, design, "fixed", contrast)
if isdir(f):
con_dirs.append(f)
return con_dirs
def path_info_run(subj, run):
"""Construct path information dict for current subject/run.
Parameters
----------
subj : int
subject number (0..15 inclusive)
run : int
run number (1..4 inclusive).
Returns
-------
path_dict : dict
a dict with all the necessary path-related keys, including 'rootdir',
and 'design', where 'design' can have values 'event' or 'block'
depending on which type of run this was for subject no `subj` and run no
`run`
"""
path_dict = {'subj': subj, 'run': run}
if exists(pjoin(DATADIR, "fiac_%(subj)02d",
"block", "initial_%(run)02d.csv") % path_dict):
path_dict['design'] = 'block'
else:
path_dict['design'] = 'event'
rootdir = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s") % path_dict
path_dict['rootdir'] = rootdir
return path_dict
def path_info_design(subj, design):
"""Construct path information dict for subject and design.
Parameters
----------
subj : int
subject number (0..15 inclusive)
design : {'event', 'block'}
type of design
Returns
-------
path_dict : dict
having keys 'rootdir', 'subj', 'design'
"""
path_dict = {'subj': subj, 'design': design}
rootdir = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s") % path_dict
path_dict['rootdir'] = rootdir
return path_dict
def results_table(path_dict):
""" Return precalculated results images for subject info in `path_dict`
Parameters
----------
path_dict : dict
containing key 'rootdir'
Returns
-------
rtab : dict
dict with keys given by run directories for this subject, values being a
list with filenames of effect and sd images.
"""
# Which runs correspond to this design type?
rootdir = path_dict['rootdir']
runs = filter(lambda f: isdir(pjoin(rootdir, f)),
['results_%02d' % i for i in range(1,5)] )
# Find out which contrasts have t-statistics,
# storing the filenames for reading below
results = {}
for rundir in runs:
rundir = pjoin(rootdir, rundir)
for condir in listdir(rundir):
for stat in ['sd', 'effect']:
fname_effect = abspath(pjoin(rundir, condir, 'effect.nii'))
fname_sd = abspath(pjoin(rundir, condir, 'sd.nii'))
if exists(fname_effect) and exists(fname_sd):
results.setdefault(condir, []).append([fname_effect,
fname_sd])
return results
def get_experiment_initial(path_dict):
"""Get the record arrays for the experimental/initial designs.
Parameters
----------
path_dict : dict
containing key 'rootdir', 'run', 'subj'
Returns
-------
experiment, initial : Two record arrays.
"""
# The following two lines read in the .csv files
# and return recarrays, with fields
# experiment: ['time', 'sentence', 'speaker']
# initial: ['time', 'initial']
rootdir = path_dict['rootdir']
if not exists(pjoin(rootdir, "experiment_%(run)02d.csv") % path_dict):
e = "can't find design for subject=%(subj)d,run=%(subj)d" % path_dict
raise OSError(e)
experiment = csv2rec(pjoin(rootdir, "experiment_%(run)02d.csv") % path_dict)
initial = csv2rec(pjoin(rootdir, "initial_%(run)02d.csv") % path_dict)
return experiment, initial
def get_fmri(path_dict):
"""Get the images for a given subject/run.
Parameters
----------
path_dict : dict
containing key 'rootdir', 'run'
Returns
-------
fmri : ndarray
anat : NIPY image
"""
fmri_im = load_image(
pjoin("%(rootdir)s/swafunctional_%(run)02d.nii") % path_dict)
return fmri_im
def ensure_dir(*path):
"""Ensure a directory exists, making it if necessary.
Returns the full path."""
dirpath = pjoin(*path)
if not isdir(dirpath):
makedirs(dirpath)
return dirpath
def output_dir(path_dict, tcons, fcons):
"""Get (and make if necessary) directory to write output into.
Parameters
----------
path_dict : dict
containing key 'rootdir', 'run'
tcons : sequence of str
t contrasts
fcons : sequence of str
F contrasts
"""
rootdir = path_dict['rootdir']
odir = pjoin(rootdir, "results_%(run)02d" % path_dict)
ensure_dir(odir)
for n in tcons:
ensure_dir(odir,n)
for n in fcons:
ensure_dir(odir,n)
return odir
def test_sanity():
import nipy.modalities.fmri.fmristat.hrf as fshrf
from nipy.algorithms.statistics import formula
from nipy.modalities.fmri import design, hrf
from nipy.modalities.fmri.fmristat.tests import FIACdesigns
from nipy.modalities.fmri.fmristat.tests.test_FIAC import matchcol
"""
Single subject fitting of FIAC model
"""
# Based on file
# subj3_evt_fonc1.txt
# subj3_bloc_fonc3.txt
for subj, run, design_type in [(3, 1, 'event'), (3, 3, 'block')]:
nvol = 191
TR = 2.5
Tstart = 1.25
volume_times = np.arange(nvol)*TR + Tstart
volume_times_rec = formula.make_recarray(volume_times, 't')
path_dict = {'subj':subj, 'run':run}
if exists(pjoin(DATADIR, "fiac_%(subj)02d",
"block", "initial_%(run)02d.csv") % path_dict):
path_dict['design'] = 'block'
else:
path_dict['design'] = 'event'
experiment = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "experiment_%(run)02d.csv")
% path_dict)
initial = csv2rec(pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "initial_%(run)02d.csv")
% path_dict)
X_exper, cons_exper = design.event_design(experiment,
volume_times_rec,
hrfs=fshrf.spectral)
X_initial, _ = design.event_design(initial,
volume_times_rec,
hrfs=[hrf.glover])
X, cons = design.stack_designs((X_exper, cons_exper), (X_initial, {}))
# Get original fmristat design
Xf = FIACdesigns.fmristat[design_type]
# Check our new design can be closely matched to the original
for i in range(X.shape[1]):
# Columns can be very well correlated negatively or positively
assert abs(matchcol(X[:,i], Xf)[1]) > 0.999
def rewrite_spec(subj, run, root = "/home/jtaylo/FIAC-HBM2009"):
"""
Take a FIAC specification file and get two specifications
(experiment, begin).
This creates two new .csv files, one for the experimental
conditions, the other for the "initial" confounding trials that
are to be modelled out.
For the block design, the "initial" trials are the first
trials of each block. For the event designs, the
"initial" trials are made up of just the first trial.
"""
if exists(pjoin("%(root)s", "fiac%(subj)d", "subj%(subj)d_evt_fonc%(run)d.txt") % {'root':root, 'subj':subj, 'run':run}):
designtype = 'evt'
else:
designtype = 'bloc'
# Fix the format of the specification so it is
# more in the form of a 2-way ANOVA
eventdict = {1:'SSt_SSp', 2:'SSt_DSp', 3:'DSt_SSp', 4:'DSt_DSp'}
s = StringIO()
w = csv.writer(s)
w.writerow(['time', 'sentence', 'speaker'])
specfile = pjoin("%(root)s", "fiac%(subj)d", "subj%(subj)d_%(design)s_fonc%(run)d.txt") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
d = np.loadtxt(specfile)
for row in d:
w.writerow([row[0]] + eventdict[row[1]].split('_'))
s.seek(0)
d = csv2rec(s)
# Now, take care of the 'begin' event
# This is due to the FIAC design
if designtype == 'evt':
b = np.array([(d[0]['time'], 1)], np.dtype([('time', np.float64),
('initial', np.int_)]))
d = d[1:]
else:
k = np.equal(np.arange(d.shape[0]) % 6, 0)
b = np.array([(tt, 1) for tt in d[k]['time']], np.dtype([('time', np.float64),
('initial', np.int_)]))
d = d[~k]
designtype = {'bloc':'block', 'evt':'event'}[designtype]
fname = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "experiment_%(run)02d.csv") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
rec2csv(d, fname)
experiment = csv2rec(fname)
fname = pjoin(DATADIR, "fiac_%(subj)02d", "%(design)s", "initial_%(run)02d.csv") % {'root':root, 'subj':subj, 'run':run, 'design':designtype}
rec2csv(b, fname)
initial = csv2rec(fname)
return d, b
def compare_results(subj, run, other_root, mask_fname):
""" Find and compare calculated results images from a previous run
This script checks that another directory containing results of this same
analysis are similar in the sense of numpy ``allclose`` within a brain mask.
Parameters
----------
subj : int
subject number (0..4, 6..15)
run : int
run number (1..4)
other_root : str
path to previous run estimation
mask_fname:
path to a mask image defining area in which to compare differences
"""
# Get information for this subject and run
path_dict = path_info_run(subj, run)
# Get mask
msk = load_image(mask_fname).get_fdata().copy().astype(bool)
# Get results directories for this run
rootdir = path_dict['rootdir']
res_dir = pjoin(rootdir, 'results_%02d' % run)
if not isdir(res_dir):
return
for dirpath, dirnames, filenames in os.walk(res_dir):
for fname in filenames:
froot, ext = splitext(fname)
if froot in ('effect', 'sd', 'F', 't'):
this_fname = pjoin(dirpath, fname)
other_fname = this_fname.replace(DATADIR, other_root)
if not exists(other_fname):
print(this_fname, 'present but ', other_fname, 'missing')
continue
this_arr = load_image(this_fname).get_fdata()
other_arr = load_image(other_fname).get_fdata()
ok = np.allclose(this_arr[msk], other_arr[msk])
if not ok and froot in ('effect', 'sd', 't'): # Maybe a sign flip
ok = np.allclose(this_arr[msk], -other_arr[msk])
if not ok:
print('Difference between', this_fname, other_fname)
def compare_all(other_root, mask_fname):
""" Run results comparison for all subjects and runs """
for subj in range(5) + range(6, 16):
for run in range(1, 5):
compare_results(subj, run, other_root, mask_fname)
|