1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
''' Single subject analysis script for SPM / Open FMRI ds105
https://openfmri.org/dataset/ds000105
Download and extract the ds105 archive to some directory.
Run this script with::
process_ds105.py ~/data/ds105
where ``~/data/ds105`` is the directory containing the ds105 data.
The example uses the very basic MATLAB / SPM interface routines in NIPY.
If you need more than very basic use, please consider using nipype. nipype has
extended capabilities to interface with external tools and for dataflow
management. nipype can handle vanilla SPM in MATLAB or SPM run through the
MATLAB common runtime (free from MATLAB Licensing).
'''
import gzip
import sys
from copy import deepcopy
from glob import glob
from os.path import abspath, isfile, splitext
from os.path import join as pjoin
from warnings import warn
import numpy as np
import nipy.interfaces.matlab as nimat
from nipy.interfaces.spm import (
fltcols,
fname_presuffix,
fnames_presuffix,
make_job,
run_jobdef,
scans_for_fnames,
spm_info,
)
# The batch scripts currently need SPM5
nimat.matlab_cmd = 'matlab-spm8 -nodesktop -nosplash'
# This definition is partly for slice timing. We can't do slice timing for this
# dataset because the slice dimension is the first, and SPM assumes it is the
# last.
N_SLICES = 40 # X slices
STUDY_DEF = {
'TR': 2.5,
'n_slices': N_SLICES,
'time_to_space': (list(range(1, N_SLICES, 2)) +
list(range(2, N_SLICES, 2)))
}
def _sorted_prefer_nii(file_list):
""" Strip any filenames ending nii.gz if matching .nii filename in list
"""
preferred = []
for fname in file_list:
if not fname.endswith('.gz'):
preferred.append(fname)
else:
nogz, ext = splitext(fname)
if nogz not in file_list:
preferred.append(fname)
return sorted(preferred)
def get_fdata(data_path, subj_id):
data_path = abspath(data_path)
data_def = {}
subject_path = pjoin(data_path, 'sub%03d' % subj_id)
functionals = _sorted_prefer_nii(
glob(pjoin(subject_path, 'BOLD', 'task*', 'bold*.nii*')))
anatomicals = _sorted_prefer_nii(
glob(pjoin(subject_path, 'anatomy', 'highres001.nii*')))
for flist in (anatomicals, functionals):
for i, fname in enumerate(flist):
nogz, gz_ext = splitext(fname)
if gz_ext == '.gz':
if not isfile(nogz):
contents = gzip.open(fname, 'rb').read()
with open(nogz, 'wb') as fobj:
fobj.write(contents)
flist[i] = nogz
if len(anatomicals) == 0:
data_def['anatomical'] = None
else:
data_def['anatomical'] = anatomicals[0]
data_def['functionals'] = functionals
return data_def
def default_ta(tr, nslices):
slice_time = tr / float(nslices)
return slice_time * (nslices - 1)
class SPMSubjectAnalysis:
""" Class to preprocess single subject in SPM
"""
def __init__(self, data_def, study_def, ana_def):
self.data_def = deepcopy(data_def)
self.study_def = self.add_study_defaults(study_def)
self.ana_def = self.add_ana_defaults(deepcopy(ana_def))
def add_study_defaults(self, study_def):
full_study_def = deepcopy(study_def)
if 'TA' not in full_study_def:
full_study_def['TA'] = default_ta(
full_study_def['TR'], full_study_def['n_slices'])
return full_study_def
def add_ana_defaults(self, ana_def):
full_ana_def = deepcopy(ana_def)
if 'fwhm' not in full_ana_def:
full_ana_def['fwhm'] = 8.0
return full_ana_def
def slicetime(self, in_prefix='', out_prefix='a'):
sess_scans = scans_for_fnames(
fnames_presuffix(self.data_def['functionals'], in_prefix))
sdef = self.study_def
stinfo = make_job('temporal', 'st', {
'scans': sess_scans,
'so': sdef['time_to_space'],
'tr': sdef['TR'],
'ta': sdef['TA'],
'nslices': float(sdef['n_slices']),
'refslice':1,
'prefix': out_prefix,
})
run_jobdef(stinfo)
return out_prefix + in_prefix
def realign(self, in_prefix=''):
sess_scans = scans_for_fnames(
fnames_presuffix(self.data_def['functionals'], in_prefix))
rinfo = make_job('spatial', 'realign', [{
'estimate':{
'data':sess_scans,
'eoptions':{
'quality': 0.9,
'sep': 4.0,
'fwhm': 5.0,
'rtm': True,
'interp': 2.0,
'wrap': [0.0,0.0,0.0],
'weight': []
}
}
}])
run_jobdef(rinfo)
return in_prefix
def reslice(self, in_prefix='', out_prefix='r', out=('1..n', 'mean')):
which = [0, 0]
if 'mean' in out:
which[1] = 1
if '1..n' in out or 'all' in out:
which[0] = 2
elif '2..n' in out:
which[0] = 1
sess_scans = scans_for_fnames(
fnames_presuffix(self.data_def['functionals'], in_prefix))
rsinfo = make_job('spatial', 'realign', [{
'write':{
'data': np.vstack(sess_scans.flat),
'roptions':{
'which': which,
'interp':4.0,
'wrap':[0.0,0.0,0.0],
'mask':True,
'prefix': out_prefix
}
}
}])
run_jobdef(rsinfo)
return out_prefix + in_prefix
def coregister(self, in_prefix=''):
func1 = self.data_def['functionals'][0]
mean_fname = fname_presuffix(func1, 'mean' + in_prefix)
crinfo = make_job('spatial', 'coreg', [{
'estimate':{
'ref': np.asarray(mean_fname, dtype=object),
'source': np.asarray(self.data_def['anatomical'],
dtype=object),
'other': [''],
'eoptions':{
'cost_fun':'nmi',
'sep':[4.0, 2.0],
'tol':np.array(
[0.02,0.02,0.02,
0.001,0.001,0.001,
0.01,0.01,0.01,
0.001,0.001,0.001]).reshape(1,12),
'fwhm':[7.0, 7.0]
}
}
}])
run_jobdef(crinfo)
return in_prefix
def seg_norm(self, in_prefix=''):
def_tpms = np.zeros((3,1), dtype=object)
spm_path = spm_info.spm_path
def_tpms[0] = pjoin(spm_path, 'tpm', 'grey.nii'),
def_tpms[1] = pjoin(spm_path, 'tpm', 'white.nii'),
def_tpms[2] = pjoin(spm_path, 'tpm', 'csf.nii')
data = np.zeros((1,), dtype=object)
data[0] = self.data_def['anatomical']
sninfo = make_job('spatial', 'preproc', {
'data': data,
'output':{
'GM':fltcols([0,0,1]),
'WM':fltcols([0,0,1]),
'CSF':fltcols([0,0,0]),
'biascor':1.0,
'cleanup':False,
},
'opts':{
'tpm':def_tpms,
'ngaus':fltcols([2,2,2,4]),
'regtype':'mni',
'warpreg':1.0,
'warpco':25.0,
'biasreg':0.0001,
'biasfwhm':60.0,
'samp':3.0,
'msk':np.array([], dtype=object),
}
})
run_jobdef(sninfo)
return in_prefix
def norm_write(self, in_prefix='', out_prefix='w'):
sess_scans = scans_for_fnames(
fnames_presuffix(self.data_def['functionals'], in_prefix))
matname = fname_presuffix(self.data_def['anatomical'],
suffix='_seg_sn.mat',
use_ext=False)
subj = {
'matname': np.zeros((1,), dtype=object),
'resample': np.vstack(sess_scans.flat),
}
subj['matname'][0] = matname
roptions = {
'preserve':False,
'bb':np.array([[-78,-112, -50],[78,76,85.0]]),
'vox':fltcols([2.0,2.0,2.0]),
'interp':1.0,
'wrap':[0.0,0.0,0.0],
'prefix': out_prefix,
}
nwinfo = make_job('spatial', 'normalise', [{
'write':{
'subj': subj,
'roptions': roptions,
}
}])
run_jobdef(nwinfo)
# knock out the list of images, replacing with only one
subj['resample'] = np.zeros((1,), dtype=object)
subj['resample'][0] = self.data_def['anatomical']
roptions['interp'] = 4.0
run_jobdef(nwinfo)
return out_prefix + in_prefix
def smooth(self, in_prefix='', out_prefix='s'):
fwhm = self.ana_def['fwhm']
try:
len(fwhm)
except TypeError:
fwhm = [fwhm] * 3
fwhm = np.asarray(fwhm, dtype=np.float64).reshape(1,3)
sess_scans = scans_for_fnames(
fnames_presuffix(self.data_def['functionals'], in_prefix))
sinfo = make_job('spatial', 'smooth',
{'data':np.vstack(sess_scans.flat),
'fwhm':fwhm,
'dtype':0})
run_jobdef(sinfo)
return out_prefix + in_prefix
def process_subject(ddef, study_def, ana_def):
""" Process subject from subject data dict `ddef`
"""
if not ddef['anatomical']:
warn("No anatomical, aborting processing")
return
ana = SPMSubjectAnalysis(ddef, study_def, ana_def)
# st_prefix = ana.slicetime('') # We can't run slice timing
st_prefix = ''
ana.realign(in_prefix=st_prefix)
ana.reslice(in_prefix=st_prefix, out=('mean',))
ana.coregister(in_prefix=st_prefix)
ana.seg_norm()
n_st_prefix = ana.norm_write(st_prefix)
ana.smooth(n_st_prefix)
def get_subjects(data_path, subj_ids, study_def, ana_def):
return [get_fdata(data_path, subj_id) for subj_id in subj_ids]
def main():
try:
data_path = sys.argv[1]
except IndexError:
raise OSError('Need ds105 data path as input')
if len(sys.argv) > 2:
subj_ids = [int(id) for id in sys.argv[2:]]
else:
subj_ids = range(1, 7)
for subj_id in subj_ids:
ddef = get_fdata(data_path, subj_id)
assert len(ddef['functionals']) in (11, 12)
process_subject(ddef, STUDY_DEF, {})
if __name__ == '__main__':
main()
|