File: demo_dmtx.py

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (73 lines) | stat: -rwxr-xr-x 2,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
Examples of design matrices specification and and computation (event-related
design, FIR design, etc)

Requires matplotlib

Author : Bertrand Thirion: 2009-2010
"""
print(__doc__)

import numpy as np

try:
    import matplotlib.pyplot as plt
except ImportError:
    raise RuntimeError("This script needs the matplotlib library")

from nipy.modalities.fmri.design_matrix import make_dmtx
from nipy.modalities.fmri.experimental_paradigm import (
    BlockParadigm,
    EventRelatedParadigm,
)

# frame times
tr = 1.0
nscans = 128
frametimes = np.linspace(0, (nscans - 1) * tr, nscans)

# experimental paradigm
conditions = ['c0', 'c0', 'c0', 'c1', 'c1', 'c1', 'c3', 'c3', 'c3']
onsets = [30, 70, 100, 10, 30, 90, 30, 40, 60]
hrf_model = 'canonical'
motion = np.cumsum(np.random.randn(128, 6), 0)
add_reg_names = ['tx', 'ty', 'tz', 'rx', 'ry', 'rz']

#event-related design matrix
paradigm = EventRelatedParadigm(conditions, onsets)

X1 = make_dmtx(
    frametimes, paradigm, hrf_model=hrf_model, drift_model='polynomial',
    drift_order=3, add_regs=motion, add_reg_names=add_reg_names)

# block design matrix
duration = 7 * np.ones(9)
paradigm = BlockParadigm(con_id=conditions, onset=onsets,
                             duration=duration)

X2 = make_dmtx(frametimes, paradigm, drift_model='polynomial',
               drift_order=3)

# FIR model
paradigm = EventRelatedParadigm(conditions, onsets)
hrf_model = 'fir'
X3 = make_dmtx(frametimes, paradigm, hrf_model=hrf_model,
               drift_model='polynomial', drift_order=3,
               fir_delays=np.arange(1, 6))

# plot the results
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 3, 1)
X1.show(ax=ax)
ax.set_title('Event-related design matrix', fontsize=12)
ax = plt.subplot(1, 3, 2)
X2.show(ax=ax)
ax.set_title('Block design matrix', fontsize=12)
ax = plt.subplot(1, 3, 3)
X3.show(ax=ax)
ax.set_title('FIR design matrix', fontsize=12)
plt.subplots_adjust(top=0.9, bottom=0.25)
plt.show()