1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = \
"""
Example of a script that crates a 'hierarchical roi' structure from the blob
model of an image
Needs matplotlib
Author: Bertrand Thirion, 2008-2009
"""
print(__doc__)
import numpy as np
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
import nipy.labs.utils.simul_multisubject_fmri_dataset as simul
from nipy.labs.spatial_models import hroi
from nipy.labs.spatial_models.discrete_domain import domain_from_binary_array
##############################################################################
# simulate the data
shape = (60, 60)
pos = np.array([[12, 14], [20, 20], [30, 20]])
ampli = np.array([3, 4, 4])
dataset = simul.surrogate_2d_dataset(n_subj=1, shape=shape, pos=pos,
ampli=ampli, width=10.0).squeeze()
# create a domain descriptor associated with this
domain = domain_from_binary_array(dataset ** 2 > 0)
nroi = hroi.HROI_as_discrete_domain_blobs(domain, dataset.ravel(),
threshold=2., smin=5)
n1 = nroi.copy()
nroi.reduce_to_leaves()
td = n1.make_forest().depth_from_leaves()
root = np.argmax(td)
lv = n1.make_forest().get_descendants(root)
u = nroi.make_graph().cc()
flat_data = dataset.ravel()
activation = [flat_data[nroi.select_id(id, roi=False)]
for id in nroi.get_id()]
nroi.set_feature('activation', activation)
label = np.reshape(n1.label, shape)
label_ = np.reshape(nroi.label, shape)
# make a figure
plt.figure(figsize=(10, 4))
plt.subplot(1, 3, 1)
plt.imshow(np.squeeze(dataset))
plt.title('Input map')
plt.axis('off')
plt.subplot(1, 3, 2)
plt.title('Nested Rois')
plt.imshow(label, interpolation='Nearest')
plt.axis('off')
plt.subplot(1, 3, 3)
plt.title('Leave Rois')
plt.imshow(label_, interpolation='Nearest')
plt.axis('off')
plt.show()
|