1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
Full step-by-step example of fitting a GLM to experimental data and visualizing
the results.
More specifically:
1. A sequence of fMRI volumes are loaded
2. A design matrix describing all the effects related to the data is computed
3. a mask of the useful brain volume is computed
4. A GLM is applied to the dataset (effect/covariance,
then contrast estimation)
Note that this corresponds to a single run.
Needs matplotlib
Author : Bertrand Thirion, 2010--2012
"""
print(__doc__)
from os import getcwd, mkdir, path
import numpy as np
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
# Local import
from get_data_light import DATA_DIR, get_first_level_dataset
from nibabel import save
from nipy.labs.viz import cm, plot_map
from nipy.modalities.fmri.design_matrix import make_dmtx
from nipy.modalities.fmri.experimental_paradigm import load_paradigm_from_csv_file
from nipy.modalities.fmri.glm import FMRILinearModel
#######################################
# Data and analysis parameters
#######################################
# volume mask
# This dataset is large
get_first_level_dataset()
data_path = path.join(DATA_DIR, 's12069_swaloc1_corr.nii.gz')
paradigm_file = path.join(DATA_DIR, 'localizer_paradigm.csv')
# timing
n_scans = 128
tr = 2.4
# paradigm
frametimes = np.linspace(0.5 * tr, (n_scans - .5) * tr, n_scans)
# confounds
hrf_model = 'canonical with derivative'
drift_model = "cosine"
hfcut = 128
# write directory
write_dir = path.join(getcwd(), 'results')
if not path.exists(write_dir):
mkdir(write_dir)
print(f'Computation will be performed in directory: {write_dir}')
########################################
# Design matrix
########################################
print('Loading design matrix...')
paradigm = load_paradigm_from_csv_file(paradigm_file)['0']
design_matrix = make_dmtx(frametimes, paradigm, hrf_model=hrf_model,
drift_model=drift_model, hfcut=hfcut)
ax = design_matrix.show()
ax.set_position([.05, .25, .9, .65])
ax.set_title('Design matrix')
plt.savefig(path.join(write_dir, 'design_matrix.png'))
#########################################
# Specify the contrasts
#########################################
# simplest ones
contrasts = {}
n_columns = len(design_matrix.names)
for i in range(paradigm.n_conditions):
contrasts[f'{design_matrix.names[2 * i]}'] = np.eye(n_columns)[2 * i]
# and more complex/ interesting ones
contrasts["audio"] = contrasts["clicDaudio"] + contrasts["clicGaudio"] +\
contrasts["calculaudio"] + contrasts["phraseaudio"]
contrasts["video"] = contrasts["clicDvideo"] + contrasts["clicGvideo"] + \
contrasts["calculvideo"] + contrasts["phrasevideo"]
contrasts["left"] = contrasts["clicGaudio"] + contrasts["clicGvideo"]
contrasts["right"] = contrasts["clicDaudio"] + contrasts["clicDvideo"]
contrasts["computation"] = contrasts["calculaudio"] + contrasts["calculvideo"]
contrasts["sentences"] = contrasts["phraseaudio"] + contrasts["phrasevideo"]
contrasts["H-V"] = contrasts["damier_H"] - contrasts["damier_V"]
contrasts["V-H"] = contrasts["damier_V"] - contrasts["damier_H"]
contrasts["left-right"] = contrasts["left"] - contrasts["right"]
contrasts["right-left"] = contrasts["right"] - contrasts["left"]
contrasts["audio-video"] = contrasts["audio"] - contrasts["video"]
contrasts["video-audio"] = contrasts["video"] - contrasts["audio"]
contrasts["computation-sentences"] = contrasts["computation"] - \
contrasts["sentences"]
contrasts["reading-visual"] = contrasts["sentences"] * 2 - \
contrasts["damier_H"] - contrasts["damier_V"]
contrasts['effects_of_interest'] = np.eye(n_columns)[:20:2]
########################################
# Perform a GLM analysis
########################################
print('Fitting a GLM (this takes time)...')
fmri_glm = FMRILinearModel(data_path, design_matrix.matrix,
mask='compute')
fmri_glm.fit(do_scaling=True, model='ar1')
#########################################
# Estimate the contrasts
#########################################
print('Computing contrasts...')
for index, (contrast_id, contrast_val) in enumerate(contrasts.items()):
print(' Contrast % 2i out of %i: %s' %
(index + 1, len(contrasts), contrast_id))
# save the z_image
image_path = path.join(write_dir, f'{contrast_id}_z_map.nii')
z_map, = fmri_glm.contrast(contrast_val, con_id=contrast_id, output_z=True)
save(z_map, image_path)
# Create snapshots of the contrasts
vmax = max(- z_map.get_fdata().min(), z_map.get_fdata().max())
if index > 0:
plt.clf()
plot_map(z_map.get_fdata(), z_map.affine,
cmap=cm.cold_hot,
vmin=- vmax,
vmax=vmax,
anat=None,
cut_coords=None,
slicer='z',
black_bg=True, # looks much better thus
figure=10,
threshold=2.5)
plt.savefig(path.join(write_dir, f'{contrast_id}_z_map.png'))
print(f"All the results were witten in {write_dir}")
plt.show()
|