File: parcel_intra.py

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (50 lines) | stat: -rwxr-xr-x 1,481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
Example of script to parcellate the data from one subject, using various
algorithms.

Note that it can take some time.

author: Bertrand Thirion, 2005-2009
"""
print(__doc__)

from os import getcwd, mkdir, path

# Local import
from get_data_light import DATA_DIR, get_second_level_dataset
from numpy import array

from nipy.labs.spatial_models.parcel_io import fixed_parcellation

# ------------------------------------
# Get the data (mask+functional image)
# take several experimental conditions
# time courses could be used instead

n_beta = [29]
mask_image = path.join(DATA_DIR, 'mask.nii.gz')
betas = [path.join(DATA_DIR, 'spmT_%04d.nii.gz' % n) for n in n_beta]
missing_file = array([not path.exists(m) for m in [mask_image] + betas]).any()
if missing_file:
    get_second_level_dataset()

# set the parameters
n_parcels = 500
mu = 10
nn = 6
verbose = 1
# write directory
write_dir = path.join(getcwd(), 'results')
if not path.exists(write_dir):
    mkdir(write_dir)


lpa = fixed_parcellation(mask_image, betas, n_parcels, nn, 'gkm',
                         write_dir, mu, verbose)
lpa = fixed_parcellation(mask_image, betas, n_parcels, nn, 'ward',
                         write_dir, mu, verbose)
lpa = fixed_parcellation(mask_image, betas, n_parcels, nn, 'ward_and_gkm',
                         write_dir, mu, verbose)