File: watershed_labeling.py

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (109 lines) | stat: -rwxr-xr-x 3,316 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
This script generates a noisy activation image image and performs a watershed
segmentation in it.

Needs matplotlib

Author : Bertrand Thirion, 2009--2012
"""
#autoindent
print(__doc__)

import numpy as np

try:
    import matplotlib.pyplot as plt
except ImportError:
    raise RuntimeError("This script needs the matplotlib library")
import matplotlib as mpl

import nipy.labs.utils.simul_multisubject_fmri_dataset as simul
from nipy.labs.spatial_models.discrete_domain import grid_domain_from_shape
from nipy.labs.spatial_models.hroi import HROI_from_watershed

###############################################################################
# data simulation

shape = (60, 60)
pos = np.array([[12, 14],
                [20, 20],
                [30, 20]])
ampli = np.array([3, 4, 4])
x = simul.surrogate_2d_dataset(n_subj=1, shape=shape, pos=pos, ampli=ampli,
                               width=10.0).squeeze()

th = 2.36

# compute the field structure and perform the watershed
domain = grid_domain_from_shape(shape)
nroi = HROI_from_watershed(domain, np.ravel(x), threshold=th)
label = nroi.label

#compute the region-based signal average
bfm = np.array([np.mean(x.ravel()[label == k]) for k in range(label.max() + 1)])
bmap = np.zeros(x.size)
if label.max() > - 1:
    bmap[label > - 1] = bfm[label[label > - 1]]

label = np.reshape(label, shape)
bmap = np.reshape(bmap, shape)

###############################################################################
# plot the input image

aux1 = (0 - x.min()) / (x.max() - x.min())
aux2 = (bmap.max() - x.min()) / (x.max() - x.min())
cdict = {'red': ((0.0, 0.0, 0.7),
                 (aux1, 0.7, 0.7),
                 (aux2, 1.0, 1.0),
                 (1.0, 1.0, 1.0)),
       'green': ((0.0, 0.0, 0.7),
                 (aux1, 0.7, 0.0),
                 (aux2, 1.0, 1.0),
                 (1.0, 1.0, 1.0)),
        'blue': ((0.0, 0.0, 0.7),
                 (aux1, 0.7, 0.0),
                 (aux2, 0.5, 0.5),
                 (1.0, 1.0, 1.0))}

my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict, 256)

plt.figure(figsize=(12, 3))
plt.subplot(1, 3, 1)
plt.imshow(np.squeeze(x), interpolation='nearest', cmap=my_cmap)
plt.axis('off')
plt.title('Thresholded image')

cb = plt.colorbar()
for t in cb.ax.get_yticklabels():
    t.set_fontsize(16)

###############################################################################
# plot the watershed label image
plt.subplot(1, 3, 2)
plt.imshow(label, interpolation='nearest')
plt.axis('off')
plt.colorbar()
plt.title('Labels')

###############################################################################
# plot the watershed-average image
plt.subplot(1, 3, 3)
aux = 0.01
cdict = {'red': ((0.0, 0.0, 0.7), (aux, 0.7, 0.7), (1.0, 1.0, 1.0)),
         'green': ((0.0, 0.0, 0.7), (aux, 0.7, 0.0), (1.0, 1.0, 1.0)),
         'blue': ((0.0, 0.0, 0.7), (aux, 0.7, 0.0), (1.0, 0.5, 1.0))}
my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict, 256)

plt.imshow(bmap, interpolation='nearest', cmap=my_cmap)
plt.axis('off')
plt.title('Label-average')

cb = plt.colorbar()
for t in cb.ax.get_yticklabels():
    t.set_fontsize(16)

plt.show()