1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
#!/usr/bin/env python3
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
__doc__ = """
This script generates a noisy activation image image and performs a watershed
segmentation in it.
Needs matplotlib
Author : Bertrand Thirion, 2009--2012
"""
#autoindent
print(__doc__)
import numpy as np
try:
import matplotlib.pyplot as plt
except ImportError:
raise RuntimeError("This script needs the matplotlib library")
import matplotlib as mpl
import nipy.labs.utils.simul_multisubject_fmri_dataset as simul
from nipy.labs.spatial_models.discrete_domain import grid_domain_from_shape
from nipy.labs.spatial_models.hroi import HROI_from_watershed
###############################################################################
# data simulation
shape = (60, 60)
pos = np.array([[12, 14],
[20, 20],
[30, 20]])
ampli = np.array([3, 4, 4])
x = simul.surrogate_2d_dataset(n_subj=1, shape=shape, pos=pos, ampli=ampli,
width=10.0).squeeze()
th = 2.36
# compute the field structure and perform the watershed
domain = grid_domain_from_shape(shape)
nroi = HROI_from_watershed(domain, np.ravel(x), threshold=th)
label = nroi.label
#compute the region-based signal average
bfm = np.array([np.mean(x.ravel()[label == k]) for k in range(label.max() + 1)])
bmap = np.zeros(x.size)
if label.max() > - 1:
bmap[label > - 1] = bfm[label[label > - 1]]
label = np.reshape(label, shape)
bmap = np.reshape(bmap, shape)
###############################################################################
# plot the input image
aux1 = (0 - x.min()) / (x.max() - x.min())
aux2 = (bmap.max() - x.min()) / (x.max() - x.min())
cdict = {'red': ((0.0, 0.0, 0.7),
(aux1, 0.7, 0.7),
(aux2, 1.0, 1.0),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.7),
(aux1, 0.7, 0.0),
(aux2, 1.0, 1.0),
(1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 0.7),
(aux1, 0.7, 0.0),
(aux2, 0.5, 0.5),
(1.0, 1.0, 1.0))}
my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict, 256)
plt.figure(figsize=(12, 3))
plt.subplot(1, 3, 1)
plt.imshow(np.squeeze(x), interpolation='nearest', cmap=my_cmap)
plt.axis('off')
plt.title('Thresholded image')
cb = plt.colorbar()
for t in cb.ax.get_yticklabels():
t.set_fontsize(16)
###############################################################################
# plot the watershed label image
plt.subplot(1, 3, 2)
plt.imshow(label, interpolation='nearest')
plt.axis('off')
plt.colorbar()
plt.title('Labels')
###############################################################################
# plot the watershed-average image
plt.subplot(1, 3, 3)
aux = 0.01
cdict = {'red': ((0.0, 0.0, 0.7), (aux, 0.7, 0.7), (1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.7), (aux, 0.7, 0.0), (1.0, 1.0, 1.0)),
'blue': ((0.0, 0.0, 0.7), (aux, 0.7, 0.0), (1.0, 0.5, 1.0))}
my_cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict, 256)
plt.imshow(bmap, interpolation='nearest', cmap=my_cmap)
plt.axis('off')
plt.title('Label-average')
cb = plt.colorbar()
for t in cb.ax.get_yticklabels():
t.set_fontsize(16)
plt.show()
|