1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
#include "fff_array.h"
#include <stdlib.h>
#include <errno.h>
/* Static functions */
static double _get_uchar(const char* data, size_t pos);
static double _get_schar(const char* data, size_t pos);
static double _get_ushort(const char* data, size_t pos);
static double _get_sshort(const char* data, size_t pos);
static double _get_uint(const char* data, size_t pos);
static double _get_int(const char* data, size_t pos);
static double _get_ulong(const char* data, size_t pos);
static double _get_long(const char* data, size_t pos);
static double _get_float(const char* data, size_t pos);
static double _get_double(const char* data, size_t pos);
static void _set_uchar(char* data, size_t pos, double value);
static void _set_schar(char* data, size_t pos, double value);
static void _set_ushort(char* data, size_t pos, double value);
static void _set_sshort(char* data, size_t pos, double value);
static void _set_uint(char* data, size_t pos, double value);
static void _set_int(char* data, size_t pos, double value);
static void _set_ulong(char* data, size_t pos, double value);
static void _set_long(char* data, size_t pos, double value);
static void _set_float(char* data, size_t pos, double value);
static void _set_double(char* data, size_t pos, double value);
static void _fff_array_iterator_update1d(void* it);
static void _fff_array_iterator_update2d(void* it);
static void _fff_array_iterator_update3d(void* it);
static void _fff_array_iterator_update4d(void* it);
/*
Creates a C-contiguous array.
*/
fff_array* fff_array_new(fff_datatype datatype,
size_t dimX,
size_t dimY,
size_t dimZ,
size_t dimT)
{
fff_array* thisone;
size_t nvoxels = dimX*dimY*dimZ*dimT;
size_t aux, offX, offY, offZ, offT;
/* Offset computation */
offT = 1;
aux = dimT;
offZ = aux;
aux *= dimZ;
offY = aux;
aux *= dimY;
offX = aux;
/* Instantiate the structure member */
thisone = (fff_array*)malloc(sizeof(fff_array));
if (thisone==NULL) {
FFF_ERROR("Out of memory", ENOMEM);
return NULL;
}
/* Set dimensions, offsets and accessors */
*thisone = fff_array_view(datatype, NULL,
dimX, dimY, dimZ, dimT,
offX, offY, offZ, offT);
/* Gives ownership */
thisone->owner = 1;
/* Allocate the image buffer */
switch(datatype) {
case FFF_UCHAR:
{
unsigned char* buf = (unsigned char*)calloc(nvoxels, sizeof(unsigned char));
thisone->data = (void*)buf;
}
break;
case FFF_SCHAR:
{
signed char* buf = (signed char*)calloc(nvoxels, sizeof(signed char));
thisone->data = (void*)buf;
}
break;
case FFF_USHORT:
{
unsigned short* buf = (unsigned short*)calloc(nvoxels, sizeof(unsigned short));
thisone->data = (void*)buf;
}
break;
case FFF_SSHORT:
{
signed short* buf = (signed short*)calloc(nvoxels, sizeof(signed short));
thisone->data = (void*)buf;
}
break;
case FFF_UINT:
{
unsigned int* buf = (unsigned int*)calloc(nvoxels, sizeof(unsigned int));
thisone->data = (void*)buf;
}
break;
case FFF_INT:
{
int* buf = (int*)calloc(nvoxels, sizeof(int));
thisone->data = (void*)buf;
}
break;
case FFF_ULONG:
{
unsigned long int* buf = (unsigned long int*)calloc(nvoxels, sizeof(unsigned long int));
thisone->data = (void*)buf;
}
break;
case FFF_LONG:
{
long int* buf = (long int*)calloc(nvoxels, sizeof(long int));
thisone->data = (void*)buf;
}
break;
case FFF_FLOAT:
{
float* buf = (float*)calloc(nvoxels, sizeof(float));
thisone->data = (void*)buf;
}
break;
case FFF_DOUBLE:
{
double* buf = (double*)calloc(nvoxels, sizeof(double));
thisone->data = (void*)buf;
}
break;
default:
FFF_ERROR("Unrecognized data type", EINVAL);
break;
}
/* Report error if array has not been allocated */
if (thisone->data==NULL)
FFF_ERROR("Out of memory", ENOMEM);
return thisone;
}
void fff_array_delete(fff_array* thisone)
{
if ((thisone->owner) && (thisone->data != NULL))
free(thisone->data);
free(thisone);
return;
}
fff_array fff_array_view(fff_datatype datatype, void* buf,
size_t dimX, size_t dimY, size_t dimZ, size_t dimT,
size_t offX, size_t offY, size_t offZ, size_t offT)
{
fff_array thisone;
fff_array_ndims ndims = FFF_ARRAY_4D;
unsigned int nbytes = fff_nbytes(datatype);
/* Decrease the number of dimensions if applicable */
if (dimT == 1) {
ndims = FFF_ARRAY_3D;
if (dimZ == 1) {
ndims = FFF_ARRAY_2D;
if (dimY == 1)
ndims = FFF_ARRAY_1D;
}
}
thisone.ndims = ndims;
/* Set dimensions / offsets / voxel size */
thisone.dimX = dimX;
thisone.dimY = dimY;
thisone.dimZ = dimZ;
thisone.dimT = dimT;
thisone.offsetX = offX;
thisone.offsetY = offY;
thisone.offsetZ = offZ;
thisone.offsetT = offT;
thisone.byte_offsetX = nbytes*offX;
thisone.byte_offsetY = nbytes*offY;
thisone.byte_offsetZ = nbytes*offZ;
thisone.byte_offsetT = nbytes*offT;
/* Set data type and point towards buffer */
thisone.datatype = datatype;
thisone.data = buf;
thisone.owner = 0;
/* Set accessors */
switch(datatype) {
case FFF_UCHAR:
{
thisone.get = &_get_uchar;
thisone.set = &_set_uchar;
}
break;
case FFF_SCHAR:
{
thisone.get = &_get_schar;
thisone.set = &_set_schar;
}
break;
case FFF_USHORT:
{
thisone.get = &_get_ushort;
thisone.set = &_set_ushort;
}
break;
case FFF_SSHORT:
{
thisone.get = &_get_sshort;
thisone.set = &_set_sshort;
}
break;
case FFF_UINT:
{
thisone.get = &_get_uint;
thisone.set = &_set_uint;
}
break;
case FFF_INT:
{
thisone.get = &_get_int;
thisone.set = &_set_int;
}
break;
case FFF_ULONG:
{
thisone.get = &_get_ulong;
thisone.set = &_set_ulong;
}
break;
case FFF_LONG:
{
thisone.get = &_get_long;
thisone.set = &_set_long;
}
break;
case FFF_FLOAT:
{
thisone.get = &_get_float;
thisone.set = &_set_float;
}
break;
case FFF_DOUBLE:
{
thisone.get = &_get_double;
thisone.set = &_set_double;
}
break;
default:
{
thisone.get = NULL;
thisone.set = NULL;
FFF_ERROR("Unrecognized data type", EINVAL);
}
break;
}
return thisone;
}
/* Check coordinate range and return FFF_NAN if position is out of bounds */
double fff_array_get(const fff_array* thisone,
size_t x,
size_t y,
size_t z,
size_t t)
{
size_t idx;
if ((x >= thisone->dimX) ||
(y >= thisone->dimY) ||
(z >= thisone->dimZ) ||
(t >= thisone->dimT))
return FFF_NAN;
idx = x*thisone->offsetX + y*thisone->offsetY + z*thisone->offsetZ + t*thisone->offsetT;
return thisone->get((const char*)thisone->data, idx);
}
/* Check coordinate range and do noting position is out of bounds */
void fff_array_set(fff_array* thisone,
size_t x,
size_t y,
size_t z,
size_t t,
double value)
{
size_t idx;
if ((x >= thisone->dimX) ||
(y >= thisone->dimY) ||
(z >= thisone->dimZ) ||
(t >= thisone->dimT))
return;
idx = x*thisone->offsetX + y*thisone->offsetY + z*thisone->offsetZ + t*thisone->offsetT;
thisone->set((char*)thisone->data, idx, value);
return;
}
void fff_array_set_all(fff_array* thisone, double val)
{
fff_array_iterator iter = fff_array_iterator_init(thisone);
while (iter.idx < iter.size) {
fff_array_set_from_iterator(thisone, iter, val);
fff_array_iterator_update(&iter);
}
return;
}
fff_array fff_array_get_block(const fff_array* thisone,
size_t x0, size_t x1, size_t fX,
size_t y0, size_t y1, size_t fY,
size_t z0, size_t z1, size_t fZ,
size_t t0, size_t t1, size_t fT)
{
char* data = (char*)thisone->data;
data += x0*thisone->byte_offsetX + y0*thisone->byte_offsetY + z0*thisone->byte_offsetZ + t0*thisone->byte_offsetT;
return fff_array_view(thisone->datatype, (void*)data,
(x1-x0)/fX+1, (y1-y0)/fY+1, (z1-z0)/fZ+1, (t1-t0)/fZ+1,
fX*thisone->offsetX, fY*thisone->offsetY, fZ*thisone->offsetZ, fT*thisone->offsetT);
}
void fff_array_extrema (double* min, double* max, const fff_array* thisone)
{
double val;
fff_array_iterator iter = fff_array_iterator_init(thisone);
/* Initialization */
*min = FFF_POSINF; /* 0.0;*/
*max = FFF_NEGINF; /*0.0;*/
while (iter.idx < iter.size) {
val = fff_array_get_from_iterator(thisone, iter);
if (val < *min)
*min = val;
else if (val > *max)
*max = val;
fff_array_iterator_update(&iter);
}
return;
}
#define CHECK_DIMS(a1,a2) \
if ((a1->dimX != a2->dimX) || \
(a1->dimY != a2->dimY) || \
(a1->dimZ != a2->dimZ) || \
(a1->dimT != a2->dimT)) \
{FFF_ERROR("Arrays have different sizes", EINVAL); return;} \
void fff_array_copy(fff_array* aRes, const fff_array* aSrc)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double valSrc;
CHECK_DIMS(aRes, aSrc);
while (itSrc.idx < itSrc.size) {
valSrc = fff_array_get_from_iterator(aSrc, itSrc);
fff_array_set_from_iterator(aRes, itRes, valSrc);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
/*
Applies an affine correction to the input array so that:
s0 --> r0
s1 --> r1
*/
void fff_array_compress(fff_array* aRes, const fff_array* aSrc,
double r0, double s0,
double r1, double s1)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double a, b, valSrc;
CHECK_DIMS(aRes, aSrc);
a = (r1-r0) / (s1-s0);
b = r0 - a*s0;
while (itSrc.idx < itSrc.size) {
valSrc = fff_array_get_from_iterator(aSrc, itSrc);
fff_array_set_from_iterator(aRes, itRes, a*valSrc+b);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
void fff_array_add(fff_array* aRes, const fff_array* aSrc)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double v;
CHECK_DIMS(aRes, aSrc);
while (itSrc.idx < itSrc.size) {
v = fff_array_get_from_iterator(aRes, itRes);
v += fff_array_get_from_iterator(aSrc, itSrc);
fff_array_set_from_iterator(aRes, itRes, v);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
void fff_array_sub(fff_array* aRes, const fff_array* aSrc)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double v;
CHECK_DIMS(aRes, aSrc);
while (itSrc.idx < itSrc.size) {
v = fff_array_get_from_iterator(aRes, itRes);
v -= fff_array_get_from_iterator(aSrc, itSrc);
fff_array_set_from_iterator(aRes, itRes, v);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
void fff_array_mul(fff_array* aRes, const fff_array* aSrc)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double v;
CHECK_DIMS(aRes, aSrc);
while (itSrc.idx < itSrc.size) {
v = fff_array_get_from_iterator(aRes, itRes);
v *= fff_array_get_from_iterator(aSrc, itSrc);
fff_array_set_from_iterator(aRes, itRes, v);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
/*
Force denominator's aboslute value greater than FFF_TINY.
*/
void fff_array_div(fff_array* aRes, const fff_array* aSrc)
{
fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
fff_array_iterator itRes = fff_array_iterator_init(aRes);
double v;
CHECK_DIMS(aRes, aSrc);
while (itSrc.idx < itSrc.size) {
v = fff_array_get_from_iterator(aSrc, itSrc);
if (FFF_ABS(v)<FFF_TINY)
v = FFF_TINY;
v = fff_array_get_from_iterator(aRes, itRes)/v;
fff_array_set_from_iterator(aRes, itRes, v);
fff_array_iterator_update(&itSrc);
fff_array_iterator_update(&itRes);
}
return;
}
fff_array_iterator fff_array_iterator_init_skip_axis(const fff_array* im, int axis)
{
fff_array_iterator iter;
size_t pY, pZ, pT;
iter.idx = 0;
iter.size = im->dimX*im->dimY*im->dimZ*im->dimT;
/* Initialize pointer and coordinates */
iter.data = (char*)im->data;
iter.x = 0;
iter.y = 0;
iter.z = 0;
iter.t = 0;
/* Boundary check parameters */
iter.ddimY = im->dimY - 1;
iter.ddimZ = im->dimZ - 1;
iter.ddimT = im->dimT - 1;
if (axis == 3) {
iter.ddimT = 0;
iter.size /= im->dimT;
}
else if (axis == 2) {
iter.ddimZ = 0;
iter.size /= im->dimZ;
}
else if (axis == 1) {
iter.ddimY = 0;
iter.size /= im->dimY;
}
else if (axis == 0)
iter.size /= im->dimX;
/* Increments */
pY = iter.ddimY * im->byte_offsetY;
pZ = iter.ddimZ * im->byte_offsetZ;
pT = iter.ddimT * im->byte_offsetT;
iter.incT = im->byte_offsetT;
iter.incZ = im->byte_offsetZ - pT;
iter.incY = im->byte_offsetY - pZ - pT;
iter.incX = im->byte_offsetX - pY - pZ - pT;
/* Update function */
switch(im->ndims) {
case FFF_ARRAY_1D:
iter.update = &_fff_array_iterator_update1d;
break;
case FFF_ARRAY_2D:
iter.update = &_fff_array_iterator_update2d;
break;
case FFF_ARRAY_3D:
iter.update = &_fff_array_iterator_update3d;
break;
case FFF_ARRAY_4D:
default:
iter.update = &_fff_array_iterator_update4d;
break;
}
return iter;
}
fff_array_iterator fff_array_iterator_init(const fff_array* im)
{
return fff_array_iterator_init_skip_axis(im, -1);
}
static void _fff_array_iterator_update1d(void* it)
{
fff_array_iterator* iter = (fff_array_iterator*)it;
iter->idx ++;
iter->data += iter->incX;
iter->x = iter->idx;
return;
}
static void _fff_array_iterator_update2d(void* it)
{
fff_array_iterator* iter = (fff_array_iterator*)it;
iter->idx ++;
if (iter->y < iter->ddimY) {
iter->y ++;
iter->data += iter->incY;
return;
}
iter->y = 0;
iter->x ++;
iter->data += iter->incX;
return;
}
static void _fff_array_iterator_update3d(void* it)
{
fff_array_iterator* iter = (fff_array_iterator*)it;
iter->idx ++;
if (iter->z < iter->ddimZ) {
iter->z ++;
iter->data += iter->incZ;
return;
}
if (iter->y < iter->ddimY) {
iter->z = 0;
iter->y ++;
iter->data += iter->incY;
return;
}
iter->z = 0;
iter->y = 0;
iter->x ++;
iter->data += iter->incX;
return;
}
static void _fff_array_iterator_update4d(void* it)
{
fff_array_iterator* iter = (fff_array_iterator*)it;
iter->idx ++;
if (iter->t < iter->ddimT) {
iter->t ++;
iter->data += iter->incT;
return;
}
if (iter->z < iter->ddimZ) {
iter->t = 0;
iter->z ++;
iter->data += iter->incZ;
return;
}
if (iter->y < iter->ddimY) {
iter->t = 0;
iter->z = 0;
iter->y ++;
iter->data += iter->incY;
return;
}
iter->t = 0;
iter->z = 0;
iter->y = 0;
iter->x ++;
iter->data += iter->incX;
return;
}
/* Image must be in DOUBLE format */
void fff_array_iterate_vector_function(fff_array* im, int axis, void(*func)(fff_vector*, void*), void* par)
{
fff_array_iterator iter;
fff_vector x;
if (im->datatype != FFF_DOUBLE) {
FFF_WARNING("Image type must be double.");
return;
}
if ((axis>3) || (axis<0)) {
FFF_WARNING("Invalid axis.");
return;
}
x.size = fff_array_dim(im, axis);
x.stride = fff_array_offset(im, axis);
x.owner = 0;
iter = fff_array_iterator_init_skip_axis(im, axis);
while (iter.idx < iter.size) {
x.data = (double*)iter.data;
(*func)(&x, par);
fff_array_iterator_update(&iter);
}
return;
}
/*
Convert image values to [0,clamp-1]; typically clamp = 256.
Possibly modify the dynamic range if the input value is
overestimated. For instance, the reconstructed MRI signal is
generally encoded in 12 bits (values ranging from 0 to
4095). Therefore, this operation may result in a loss of
information.
*/
void fff_array_clamp(fff_array* aRes, const fff_array* aSrc, double th, int* clamp)
{
double imin, imax, tth;
int dmax = *clamp - 1;
/* Compute input image min and max */
fff_array_extrema(&imin, &imax, aSrc);
/* Make sure the threshold is not below the min intensity */
tth = FFF_MAX(th, imin);
/* Test */
if (tth>imax) {
FFF_WARNING("Inconsistent threshold, ignored.");
tth = imin;
}
/* If the image dynamic is small, no need for compression: just
downshift image values and re-estimate the dynamic range (hence
imax is translated to imax-tth casted to SSHORT) */
if ((fff_is_integer(aSrc->datatype)) && ((imax-tth)<=dmax)) {
fff_array_compress(aRes, aSrc, 0, tth, 1, tth+1);
*clamp = (int)(imax-tth) + 1;
}
/* Otherwise, compress after downshifting image values (values equal
to the threshold are reset to zero) */
else
fff_array_compress(aRes, aSrc, 0, tth, dmax, imax);
return;
}
/*************************************************************************
Manually templated array acessors
*************************************************************************/
static double _get_uchar(const char* data, size_t pos)
{
unsigned char* buf = (unsigned char*)data;
return((double)buf[pos]);
}
static double _get_schar(const char* data, size_t pos)
{
signed char* buf = (signed char*)data;
return((double)buf[pos]);
}
static double _get_ushort(const char* data, size_t pos)
{
unsigned short* buf = (unsigned short*)data;
return((double)buf[pos]);
}
static double _get_sshort(const char* data, size_t pos)
{
signed short* buf = (signed short*)data;
return((double)buf[pos]);
}
static double _get_uint(const char* data, size_t pos)
{
unsigned int* buf = (unsigned int*)data;
return((double)buf[pos]);
}
static double _get_int(const char* data, size_t pos)
{
int* buf = (int*)data;
return((double)buf[pos]);
}
static double _get_ulong(const char* data, size_t pos)
{
unsigned long int* buf = (unsigned long int*)data;
return((double)buf[pos]);
}
static double _get_long(const char* data, size_t pos)
{
long int* buf = (long int*)data;
return((double)buf[pos]);
}
static double _get_float(const char* data, size_t pos)
{
float* buf = (float*)data;
return((double)buf[pos]);
}
static double _get_double(const char* data, size_t pos)
{
double* buf = (double*)data;
return(buf[pos]);
}
static void _set_uchar(char* data, size_t pos, double value)
{
unsigned char* buf = (unsigned char*)data;
buf[pos] = (unsigned char)(FFF_ROUND(value));
return;
}
static void _set_schar(char* data, size_t pos, double value)
{
signed char* buf = (signed char*)data;
buf[pos] = (signed char)(FFF_ROUND(value));
return;
}
static void _set_ushort(char* data, size_t pos, double value)
{
unsigned short* buf = (unsigned short*)data;
buf[pos] = (unsigned short)(FFF_ROUND(value));
return;
}
static void _set_sshort(char* data, size_t pos, double value)
{
signed short* buf = (signed short*)data;
buf[pos] = (signed short)(FFF_ROUND(value));
return;
}
static void _set_uint(char* data, size_t pos, double value)
{
unsigned int* buf = (unsigned int*)data;
buf[pos] = (unsigned int)(FFF_ROUND(value));
return;
}
static void _set_int(char* data, size_t pos, double value)
{
int* buf = (int*)data;
buf[pos] = (int)(FFF_ROUND(value));
return;
}
static void _set_ulong(char* data, size_t pos, double value)
{
unsigned long int* buf = (unsigned long int*)data;
buf[pos] = (unsigned long int)(FFF_ROUND(value));
return;
}
static void _set_long(char* data, size_t pos, double value)
{
long int* buf = (long int*)data;
buf[pos] = (long int)(FFF_ROUND(value));
return;
}
static void _set_float(char* data, size_t pos, double value)
{
float* buf = (float*)data;
buf[pos] = (float)value;
return;
}
static void _set_double(char* data, size_t pos, double value)
{
double* buf = (double*)data;
buf[pos] = value;
return;
}
|