File: fff_array.c

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (900 lines) | stat: -rw-r--r-- 20,280 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
#include "fff_array.h"

#include <stdlib.h>
#include <errno.h>


/* Static functions */
static double _get_uchar(const char* data, size_t pos);
static double _get_schar(const char* data, size_t pos);
static double _get_ushort(const char* data, size_t pos);
static double _get_sshort(const char* data, size_t pos);
static double _get_uint(const char* data, size_t pos);
static double _get_int(const char* data, size_t pos);
static double _get_ulong(const char* data, size_t pos);
static double _get_long(const char* data, size_t pos);
static double _get_float(const char* data, size_t pos);
static double _get_double(const char* data, size_t pos);
static void _set_uchar(char* data, size_t pos, double value);
static void _set_schar(char* data, size_t pos, double value);
static void _set_ushort(char* data, size_t pos, double value);
static void _set_sshort(char* data, size_t pos, double value);
static void _set_uint(char* data, size_t pos, double value);
static void _set_int(char* data, size_t pos, double value);
static void _set_ulong(char* data, size_t pos, double value);
static void _set_long(char* data, size_t pos, double value);
static void _set_float(char* data, size_t pos, double value);
static void _set_double(char* data, size_t pos, double value);

static void _fff_array_iterator_update1d(void* it);
static void _fff_array_iterator_update2d(void* it);
static void _fff_array_iterator_update3d(void* it);
static void _fff_array_iterator_update4d(void* it);
/*

Creates a C-contiguous array.

*/
fff_array* fff_array_new(fff_datatype datatype,
			 size_t dimX,
			 size_t dimY,
			 size_t dimZ,
			 size_t dimT)
{
  fff_array* thisone;
  size_t nvoxels = dimX*dimY*dimZ*dimT;
  size_t aux, offX, offY, offZ, offT;

  /* Offset computation */
  offT = 1;
  aux = dimT;
  offZ = aux;
  aux *= dimZ;
  offY = aux;
  aux *= dimY;
  offX = aux;

  /* Instantiate the structure member */
  thisone = (fff_array*)malloc(sizeof(fff_array));
  if (thisone==NULL) {
    FFF_ERROR("Out of memory", ENOMEM);
    return NULL;
  }

  /* Set dimensions, offsets and accessors */
  *thisone =  fff_array_view(datatype, NULL,
			     dimX, dimY, dimZ, dimT,
			     offX, offY, offZ, offT);

  /* Gives ownership */
  thisone->owner = 1;

  /* Allocate the image buffer */
  switch(datatype) {

  case FFF_UCHAR:
    {
      unsigned char* buf = (unsigned char*)calloc(nvoxels, sizeof(unsigned char));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_SCHAR:
    {
      signed char* buf = (signed char*)calloc(nvoxels, sizeof(signed char));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_USHORT:
    {
      unsigned short* buf = (unsigned short*)calloc(nvoxels, sizeof(unsigned short));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_SSHORT:
    {
      signed short* buf = (signed short*)calloc(nvoxels, sizeof(signed short));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_UINT:
    {
      unsigned int* buf = (unsigned int*)calloc(nvoxels, sizeof(unsigned int));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_INT:
    {
      int* buf = (int*)calloc(nvoxels, sizeof(int));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_ULONG:
    {
      unsigned long int* buf = (unsigned long int*)calloc(nvoxels, sizeof(unsigned long int));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_LONG:
    {
      long int* buf = (long int*)calloc(nvoxels, sizeof(long int));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_FLOAT:
    {
      float* buf = (float*)calloc(nvoxels, sizeof(float));
      thisone->data = (void*)buf;
    }
    break;
  case FFF_DOUBLE:
    {
      double* buf = (double*)calloc(nvoxels, sizeof(double));
      thisone->data = (void*)buf;
    }
    break;
  default:
    FFF_ERROR("Unrecognized data type", EINVAL);
    break;

  }

  /* Report error if array has not been allocated */
  if (thisone->data==NULL)
    FFF_ERROR("Out of memory", ENOMEM);

  return thisone;
}


void fff_array_delete(fff_array* thisone)
{
  if ((thisone->owner) && (thisone->data != NULL))
    free(thisone->data);
  free(thisone);
  return;
}


fff_array fff_array_view(fff_datatype datatype, void* buf,
			 size_t dimX, size_t dimY, size_t dimZ, size_t dimT,
			 size_t offX, size_t offY, size_t offZ, size_t offT)
{
  fff_array thisone;
  fff_array_ndims ndims = FFF_ARRAY_4D;
  unsigned int nbytes = fff_nbytes(datatype);

  /* Decrease the number of dimensions if applicable */
  if (dimT == 1) {
    ndims = FFF_ARRAY_3D;
    if (dimZ == 1) {
      ndims = FFF_ARRAY_2D;
      if (dimY == 1)
	ndims = FFF_ARRAY_1D;
    }
  }
  thisone.ndims = ndims;

  /* Set dimensions / offsets / voxel size */
  thisone.dimX = dimX;
  thisone.dimY = dimY;
  thisone.dimZ = dimZ;
  thisone.dimT = dimT;
  thisone.offsetX = offX;
  thisone.offsetY = offY;
  thisone.offsetZ = offZ;
  thisone.offsetT = offT;
  thisone.byte_offsetX = nbytes*offX;
  thisone.byte_offsetY = nbytes*offY;
  thisone.byte_offsetZ = nbytes*offZ;
  thisone.byte_offsetT = nbytes*offT;

  /* Set data type and point towards buffer */
  thisone.datatype = datatype;
  thisone.data = buf;
  thisone.owner = 0;

  /* Set accessors */
  switch(datatype) {

  case FFF_UCHAR:
    {
      thisone.get = &_get_uchar;
      thisone.set = &_set_uchar;
    }
    break;
  case FFF_SCHAR:
    {
      thisone.get = &_get_schar;
      thisone.set = &_set_schar;
    }
    break;
  case FFF_USHORT:
    {
      thisone.get = &_get_ushort;
      thisone.set = &_set_ushort;
    }
    break;
  case FFF_SSHORT:
    {
      thisone.get = &_get_sshort;
      thisone.set = &_set_sshort;
    }
    break;
  case FFF_UINT:
    {
      thisone.get = &_get_uint;
      thisone.set = &_set_uint;
    }
    break;
  case FFF_INT:
    {
      thisone.get = &_get_int;
      thisone.set = &_set_int;
    }
    break;
  case FFF_ULONG:
    {
      thisone.get = &_get_ulong;
      thisone.set = &_set_ulong;
    }
    break;
  case FFF_LONG:
    {
      thisone.get = &_get_long;
      thisone.set = &_set_long;
    }
    break;
  case FFF_FLOAT:
    {
      thisone.get = &_get_float;
      thisone.set = &_set_float;
    }
    break;
  case FFF_DOUBLE:
    {
      thisone.get = &_get_double;
      thisone.set = &_set_double;
    }
    break;
  default:
    {
      thisone.get = NULL;
      thisone.set = NULL;
      FFF_ERROR("Unrecognized data type", EINVAL);
    }
    break;

  }

  return thisone;
}


/* Check coordinate range and return FFF_NAN if position is out of bounds */
double fff_array_get(const fff_array* thisone,
		     size_t x,
		     size_t y,
		     size_t z,
		     size_t t)
{
  size_t idx;

  if ((x >= thisone->dimX) ||
      (y >= thisone->dimY) ||
      (z >= thisone->dimZ) ||
      (t >= thisone->dimT))
    return FFF_NAN;

  idx = x*thisone->offsetX + y*thisone->offsetY + z*thisone->offsetZ + t*thisone->offsetT;
  return thisone->get((const char*)thisone->data, idx);
}


/* Check coordinate range and do noting position is out of bounds */
void fff_array_set(fff_array* thisone,
		   size_t x,
		   size_t y,
		   size_t z,
		   size_t t,
		   double value)
{
  size_t idx;

  if ((x >= thisone->dimX) ||
      (y >= thisone->dimY) ||
      (z >= thisone->dimZ) ||
      (t >= thisone->dimT))
    return;

  idx = x*thisone->offsetX + y*thisone->offsetY + z*thisone->offsetZ + t*thisone->offsetT;
  thisone->set((char*)thisone->data, idx, value);
  return;
}



void fff_array_set_all(fff_array* thisone, double val)
{
  fff_array_iterator iter = fff_array_iterator_init(thisone);

  while (iter.idx < iter.size) {
    fff_array_set_from_iterator(thisone, iter, val);
    fff_array_iterator_update(&iter);
  }

  return;
}



fff_array fff_array_get_block(const fff_array* thisone,
			      size_t x0, size_t x1, size_t fX,
			      size_t y0, size_t y1, size_t fY,
			      size_t z0, size_t z1, size_t fZ,
			      size_t t0, size_t t1, size_t fT)
{
  char* data = (char*)thisone->data;
  data += x0*thisone->byte_offsetX + y0*thisone->byte_offsetY + z0*thisone->byte_offsetZ + t0*thisone->byte_offsetT;
  return fff_array_view(thisone->datatype, (void*)data,
			(x1-x0)/fX+1, (y1-y0)/fY+1, (z1-z0)/fZ+1, (t1-t0)/fZ+1,
			fX*thisone->offsetX, fY*thisone->offsetY, fZ*thisone->offsetZ, fT*thisone->offsetT);
}



void fff_array_extrema (double* min, double* max, const fff_array* thisone)
{
  double val;
  fff_array_iterator iter = fff_array_iterator_init(thisone);

  /* Initialization */
  *min = FFF_POSINF; /* 0.0;*/
  *max = FFF_NEGINF; /*0.0;*/

  while (iter.idx < iter.size) {
    val = fff_array_get_from_iterator(thisone, iter);
    if (val < *min)
      *min = val;
    else if (val > *max)
      *max = val;
    fff_array_iterator_update(&iter);
  }

  return;
}



#define CHECK_DIMS(a1,a2)					\
  if ((a1->dimX != a2->dimX) ||					\
      (a1->dimY != a2->dimY) ||					\
      (a1->dimZ != a2->dimZ) ||					\
      (a1->dimT != a2->dimT))					\
    {FFF_ERROR("Arrays have different sizes", EINVAL); return;}	\



void fff_array_copy(fff_array* aRes, const fff_array* aSrc)
{
  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double valSrc;

  CHECK_DIMS(aRes, aSrc);

  while (itSrc.idx < itSrc.size) {
    valSrc = fff_array_get_from_iterator(aSrc, itSrc);
    fff_array_set_from_iterator(aRes, itRes, valSrc);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}

/*
  Applies an affine correction to the input array so that:

  s0 --> r0
  s1 --> r1

*/
void fff_array_compress(fff_array* aRes, const fff_array* aSrc,
			double r0, double s0,
			double r1, double s1)
{
  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double a, b, valSrc;

  CHECK_DIMS(aRes, aSrc);

  a = (r1-r0) / (s1-s0);
  b = r0 - a*s0;

  while (itSrc.idx < itSrc.size) {
    valSrc = fff_array_get_from_iterator(aSrc, itSrc);
    fff_array_set_from_iterator(aRes, itRes, a*valSrc+b);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}

void fff_array_add(fff_array* aRes, const fff_array* aSrc)
{

  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double v;

  CHECK_DIMS(aRes, aSrc);

  while (itSrc.idx < itSrc.size) {
    v = fff_array_get_from_iterator(aRes, itRes);
    v += fff_array_get_from_iterator(aSrc, itSrc);
    fff_array_set_from_iterator(aRes, itRes, v);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}

void fff_array_sub(fff_array* aRes, const fff_array* aSrc)
{
  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double v;

  CHECK_DIMS(aRes, aSrc);

  while (itSrc.idx < itSrc.size) {
    v = fff_array_get_from_iterator(aRes, itRes);
    v -= fff_array_get_from_iterator(aSrc, itSrc);
    fff_array_set_from_iterator(aRes, itRes, v);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}

void fff_array_mul(fff_array* aRes, const fff_array* aSrc)
{
  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double v;

  CHECK_DIMS(aRes, aSrc);

  while (itSrc.idx < itSrc.size) {
    v = fff_array_get_from_iterator(aRes, itRes);
    v *= fff_array_get_from_iterator(aSrc, itSrc);
    fff_array_set_from_iterator(aRes, itRes, v);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}

/*
  Force denominator's aboslute value greater than FFF_TINY.
 */
void fff_array_div(fff_array* aRes, const fff_array* aSrc)
{
  fff_array_iterator itSrc = fff_array_iterator_init(aSrc);
  fff_array_iterator itRes = fff_array_iterator_init(aRes);
  double v;

  CHECK_DIMS(aRes, aSrc);

  while (itSrc.idx < itSrc.size) {
    v = fff_array_get_from_iterator(aSrc, itSrc);
    if (FFF_ABS(v)<FFF_TINY)
      v = FFF_TINY;
    v = fff_array_get_from_iterator(aRes, itRes)/v;
    fff_array_set_from_iterator(aRes, itRes, v);
    fff_array_iterator_update(&itSrc);
    fff_array_iterator_update(&itRes);
  }

  return;
}





fff_array_iterator fff_array_iterator_init_skip_axis(const fff_array* im, int axis)
{
  fff_array_iterator iter;
  size_t pY, pZ, pT;

  iter.idx = 0;
  iter.size = im->dimX*im->dimY*im->dimZ*im->dimT;

  /* Initialize pointer and coordinates */
  iter.data = (char*)im->data;
  iter.x = 0;
  iter.y = 0;
  iter.z = 0;
  iter.t = 0;

  /* Boundary check parameters */
  iter.ddimY = im->dimY - 1;
  iter.ddimZ = im->dimZ - 1;
  iter.ddimT = im->dimT - 1;

  if (axis == 3) {
    iter.ddimT = 0;
    iter.size /= im->dimT;
  }
  else if (axis == 2) {
    iter.ddimZ = 0;
    iter.size /= im->dimZ;
  }
  else if (axis == 1) {
    iter.ddimY = 0;
    iter.size /= im->dimY;
  }
  else if (axis == 0)
    iter.size /= im->dimX;

  /* Increments */
  pY = iter.ddimY * im->byte_offsetY;
  pZ = iter.ddimZ * im->byte_offsetZ;
  pT = iter.ddimT * im->byte_offsetT;
  iter.incT = im->byte_offsetT;
  iter.incZ = im->byte_offsetZ - pT;
  iter.incY = im->byte_offsetY - pZ - pT;
  iter.incX = im->byte_offsetX - pY - pZ - pT;

  /* Update function */
  switch(im->ndims) {

  case FFF_ARRAY_1D:
    iter.update = &_fff_array_iterator_update1d;
    break;

  case FFF_ARRAY_2D:
    iter.update = &_fff_array_iterator_update2d;
    break;

  case FFF_ARRAY_3D:
    iter.update = &_fff_array_iterator_update3d;
    break;

  case FFF_ARRAY_4D:
  default:
    iter.update = &_fff_array_iterator_update4d;
    break;

  }

  return iter;
}

fff_array_iterator fff_array_iterator_init(const fff_array* im)
{
  return fff_array_iterator_init_skip_axis(im, -1);
}




static void _fff_array_iterator_update1d(void* it)
{
  fff_array_iterator* iter = (fff_array_iterator*)it;

  iter->idx ++;
  iter->data += iter->incX;
  iter->x = iter->idx;
  return;
}


static void _fff_array_iterator_update2d(void* it)
{
  fff_array_iterator* iter = (fff_array_iterator*)it;

  iter->idx ++;

  if (iter->y < iter->ddimY) {
    iter->y ++;
    iter->data += iter->incY;
    return;
  }

  iter->y = 0;
  iter->x ++;
  iter->data += iter->incX;
  return;
}



static void _fff_array_iterator_update3d(void* it)
{
  fff_array_iterator* iter = (fff_array_iterator*)it;

  iter->idx ++;

  if (iter->z < iter->ddimZ) {
    iter->z ++;
    iter->data += iter->incZ;
    return;
  }

  if (iter->y < iter->ddimY) {
    iter->z = 0;
    iter->y ++;
    iter->data += iter->incY;
    return;
  }

  iter->z = 0;
  iter->y = 0;
  iter->x ++;
  iter->data += iter->incX;
  return;
}



static void _fff_array_iterator_update4d(void* it)
{
  fff_array_iterator* iter = (fff_array_iterator*)it;

  iter->idx ++;

  if (iter->t < iter->ddimT) {
    iter->t ++;
    iter->data += iter->incT;
    return;
  }

  if (iter->z < iter->ddimZ) {
    iter->t = 0;
    iter->z ++;
    iter->data += iter->incZ;
    return;
  }

  if (iter->y < iter->ddimY) {
    iter->t = 0;
    iter->z = 0;
    iter->y ++;
    iter->data += iter->incY;
    return;
  }

  iter->t = 0;
  iter->z = 0;
  iter->y = 0;
  iter->x ++;
  iter->data += iter->incX;
  return;
}






/* Image must be in DOUBLE format */
void fff_array_iterate_vector_function(fff_array* im, int axis, void(*func)(fff_vector*, void*), void* par)
{
  fff_array_iterator iter;
  fff_vector x;

  if (im->datatype != FFF_DOUBLE) {
    FFF_WARNING("Image type must be double.");
    return;
  }
  if ((axis>3) || (axis<0)) {
    FFF_WARNING("Invalid axis.");
    return;
 }

  x.size = fff_array_dim(im, axis);
  x.stride = fff_array_offset(im, axis);
  x.owner = 0;

  iter = fff_array_iterator_init_skip_axis(im, axis);
  while (iter.idx < iter.size) {
    x.data = (double*)iter.data;
    (*func)(&x, par);
    fff_array_iterator_update(&iter);
  }

  return;
}




/*
  Convert image values to [0,clamp-1]; typically clamp = 256.
  Possibly modify the dynamic range if the input value is
  overestimated.  For instance, the reconstructed MRI signal is
  generally encoded in 12 bits (values ranging from 0 to
  4095). Therefore, this operation may result in a loss of
  information.
*/

void fff_array_clamp(fff_array* aRes, const fff_array* aSrc, double th, int* clamp)
{
  double imin, imax, tth;
  int dmax = *clamp - 1;

  /* Compute input image min and max */
  fff_array_extrema(&imin, &imax, aSrc);

  /* Make sure the threshold is not below the min intensity */
  tth = FFF_MAX(th, imin);

  /* Test */
  if (tth>imax) {
    FFF_WARNING("Inconsistent threshold, ignored.");
    tth = imin;
  }

  /* If the image dynamic is small, no need for compression: just
     downshift image values and re-estimate the dynamic range (hence
     imax is translated to imax-tth casted to SSHORT) */
  if ((fff_is_integer(aSrc->datatype)) && ((imax-tth)<=dmax)) {
    fff_array_compress(aRes, aSrc, 0, tth, 1, tth+1);
    *clamp = (int)(imax-tth) + 1;
  }

  /* Otherwise, compress after downshifting image values (values equal
     to the threshold are reset to zero) */
  else
    fff_array_compress(aRes, aSrc, 0, tth, dmax, imax);

  return;
}




/*************************************************************************

                    Manually templated array acessors


 *************************************************************************/

static double _get_uchar(const char* data, size_t pos)
{
  unsigned char* buf = (unsigned char*)data;
  return((double)buf[pos]);
}

static double _get_schar(const char* data, size_t pos)
{
  signed char* buf = (signed char*)data;
  return((double)buf[pos]);
}

static double _get_ushort(const char* data, size_t pos)
{
  unsigned short* buf = (unsigned short*)data;
  return((double)buf[pos]);
}

static double _get_sshort(const char* data, size_t pos)
{
  signed short* buf = (signed short*)data;
  return((double)buf[pos]);
}

static double _get_uint(const char* data, size_t pos)
{
  unsigned int* buf = (unsigned int*)data;
  return((double)buf[pos]);
}

static double _get_int(const char* data, size_t pos)
{
  int* buf = (int*)data;
  return((double)buf[pos]);
}

static double _get_ulong(const char* data, size_t pos)
{
  unsigned long int* buf = (unsigned long int*)data;
  return((double)buf[pos]);
}

static double _get_long(const char* data, size_t pos)
{
  long int* buf = (long int*)data;
  return((double)buf[pos]);
}

static double _get_float(const char* data, size_t pos)
{
  float* buf = (float*)data;
  return((double)buf[pos]);
}

static double _get_double(const char* data, size_t pos)
{
  double* buf = (double*)data;
  return(buf[pos]);
}


static void _set_uchar(char* data, size_t pos, double value)
{
  unsigned char* buf = (unsigned char*)data;
  buf[pos] = (unsigned char)(FFF_ROUND(value));
  return;
}

static void _set_schar(char* data, size_t pos, double value)
{
  signed char* buf = (signed char*)data;
  buf[pos] = (signed char)(FFF_ROUND(value));
  return;
}

static void _set_ushort(char* data, size_t pos, double value)
{
  unsigned short* buf = (unsigned short*)data;
  buf[pos] = (unsigned short)(FFF_ROUND(value));
  return;
}

static void _set_sshort(char* data, size_t pos, double value)
{
  signed short* buf = (signed short*)data;
  buf[pos] = (signed short)(FFF_ROUND(value));
  return;
}

static void _set_uint(char* data, size_t pos, double value)
{
  unsigned int* buf = (unsigned int*)data;
  buf[pos] = (unsigned int)(FFF_ROUND(value));
  return;
}

static void _set_int(char* data, size_t pos, double value)
{
  int* buf = (int*)data;
  buf[pos] = (int)(FFF_ROUND(value));
  return;
}

static void _set_ulong(char* data, size_t pos, double value)
{
  unsigned long int* buf = (unsigned long int*)data;
  buf[pos] = (unsigned long int)(FFF_ROUND(value));
  return;
}

static void _set_long(char* data, size_t pos, double value)
{
  long int* buf = (long int*)data;
  buf[pos] = (long int)(FFF_ROUND(value));
  return;
}

static void _set_float(char* data, size_t pos, double value)
{
  float* buf = (float*)data;
  buf[pos] = (float)value;
  return;
}

static void _set_double(char* data, size_t pos, double value)
{
  double* buf = (double*)data;
  buf[pos] = value;
  return;
}