1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
#include "fff_glm_kalman.h"
#include "fff_base.h"
#include "fff_blas.h"
#include <stdio.h>
#include <stdlib.h>
/* Declaration of static functions */
static void _fff_glm_RKF_iterate_Vb( fff_matrix* Vb, const fff_matrix* Vb0, const fff_matrix* Hspp,
double aux1, double aux2, fff_matrix* Maux );
static double _fff_glm_hermit_norm( const fff_matrix* A, const fff_vector* x, fff_vector* vaux );
fff_glm_KF* fff_glm_KF_new( size_t dim )
{
fff_glm_KF * thisone;
/* Start with allocating the object */
thisone = (fff_glm_KF*) calloc( 1, sizeof(fff_glm_KF) );
/* Checks that the pointer has been allocated */
if ( thisone == NULL)
return NULL;
/* Allocate KF objects */
thisone->b = fff_vector_new( dim );
thisone->Cby = fff_vector_new( dim );
thisone->Vb = fff_matrix_new( dim, dim );
/* Initialization */
thisone->dim = dim;
thisone->t = 0;
thisone->ssd = 0.0;
thisone->s2 = 0.0;
thisone->dof = 0.0;
thisone->s2_cor = 0.0;
/* Initialize covariance using a scalar matrix */
fff_matrix_set_scalar( thisone->Vb, FFF_GLM_KALMAN_INIT_VAR);
return thisone;
}
void fff_glm_KF_delete( fff_glm_KF* thisone )
{
if ( thisone != NULL ) {
if ( thisone->b != NULL ) fff_vector_delete(thisone->b);
if ( thisone->Cby != NULL ) fff_vector_delete(thisone->Cby);
if ( thisone->Vb != NULL ) fff_matrix_delete(thisone->Vb);
free( thisone );
}
return;
}
void fff_glm_KF_reset( fff_glm_KF* thisone )
{
thisone->t = 0;
thisone->ssd = 0.0;
thisone->s2 = 0.0;
thisone->dof = 0.0;
thisone->s2_cor = 0.0;
fff_vector_set_all( thisone->b, 0.0 );
fff_matrix_set_scalar( thisone->Vb, FFF_GLM_KALMAN_INIT_VAR );
return;
}
void fff_glm_KF_iterate( fff_glm_KF* thisone, double y, const fff_vector* x )
{
double Ey, Vy, invVy, ino;
/* Update time */
thisone->t ++;
/* Measurement moments conditional to the effect */
Ey = fff_blas_ddot( x, thisone->b );
fff_blas_dsymv( CblasUpper, 1.0, thisone->Vb, x, 0.0, thisone->Cby );
Vy = fff_blas_ddot( x, thisone->Cby ) + 1.0;
invVy = 1/Vy;
/* Inovation */
ino = y - Ey;
/* Update effect estimate */
fff_blas_daxpy( invVy*ino, thisone->Cby, thisone->b );
/* Update effect variance matrix: Vb = Vb - invVy*Cby*Cby' */
fff_blas_dger( -invVy, thisone->Cby, thisone->Cby, thisone->Vb );
/* Update sum of squares and scale */
thisone->ssd = thisone->ssd + FFF_SQR(ino)*invVy;
thisone->s2 = thisone->ssd / (double)thisone->t;
return;
}
fff_glm_RKF* fff_glm_RKF_new( size_t dim )
{
fff_glm_RKF* thisone;
/* Start with allocating the object */
thisone = (fff_glm_RKF*) calloc( 1, sizeof(fff_glm_RKF) );
/* Checks that the pointer has been allocated */
if ( thisone == NULL)
return NULL;
/* Allocate RKF objects */
thisone->Kfilt = fff_glm_KF_new( dim );
thisone->db = fff_vector_new( dim );
thisone->Hssd = fff_matrix_new( dim, dim );
thisone->Gspp = fff_vector_new( dim );
thisone->Hspp = fff_matrix_new( dim, dim );
thisone->b = fff_vector_new( dim );
thisone->Vb = fff_matrix_new( dim, dim );
thisone->vaux = fff_vector_new( dim );
thisone->Maux = fff_matrix_new( dim, dim );
/* Initialization */
thisone->dim = dim;
thisone->t = 0;
thisone->spp = 0.0;
thisone->s2 = 0.0;
thisone->a = 0.0;
thisone->dof = 0.0;
thisone->s2_cor = 0.0;
return thisone;
}
void fff_glm_RKF_delete( fff_glm_RKF* thisone )
{
if ( thisone != NULL ) {
if ( thisone->Kfilt != NULL ) fff_glm_KF_delete( thisone->Kfilt );
if ( thisone->db != NULL ) fff_vector_delete(thisone->db);
if ( thisone->Hssd != NULL ) fff_matrix_delete(thisone->Hssd);
if ( thisone->Gspp != NULL ) fff_vector_delete(thisone->Gspp);
if ( thisone->Hspp != NULL ) fff_matrix_delete(thisone->Hspp);
if ( thisone->b != NULL ) fff_vector_delete(thisone->b);
if ( thisone->Vb != NULL ) fff_matrix_delete(thisone->Vb);
if ( thisone->vaux != NULL ) fff_vector_delete(thisone->vaux);
if ( thisone->Maux != NULL ) fff_matrix_delete(thisone->Maux);
free(thisone);
}
return;
}
void fff_glm_RKF_reset( fff_glm_RKF* thisone )
{
thisone->t = 0;
thisone->spp = 0;
thisone->s2 = 0;
thisone->a = 0;
thisone->dof = 0;
thisone->s2_cor = 0;
fff_glm_KF_reset( thisone->Kfilt );
fff_vector_set_all( thisone->Gspp, 0.0 );
fff_matrix_set_all( thisone->Hssd, 0.0 );
fff_matrix_set_all( thisone->Hspp, 0.0 );
return;
}
void fff_glm_RKF_iterate( fff_glm_RKF* thisone,
unsigned int nloop,
double y, const fff_vector* x,
double yy, const fff_vector* xx )
{
unsigned int iter;
double cor, r, rr, ssd_ref, spp_ref, aux1, aux2;
/* Update time */
thisone->t ++;
/* Store the current OLS estimate */
fff_vector_memcpy( thisone->vaux, thisone->Kfilt->b );
/* Iterate the standard Kalman filter */
fff_glm_KF_iterate( thisone->Kfilt, y, x );
/* OLS estimate variation */
fff_vector_memcpy( thisone->db, thisone->Kfilt->b );
fff_vector_sub( thisone->db, thisone->vaux ); /* db = b - db */
/* Update SSD hessian: Hssd = Hssd + x*x' */
fff_blas_dger( 1.0, x, x, thisone->Hssd );
/* Dont process any further if we are dealing with the first scan */
if ( thisone->t==1 ) {
thisone->s2 = thisone->Kfilt->s2;
fff_vector_memcpy( thisone->b, thisone->Kfilt->b );
fff_matrix_memcpy( thisone->Vb, thisone->Kfilt->Vb );
return;
}
/* Update bias correction factor otherwise */
else
cor = (double)thisone->t / (double)(thisone->t - 1);
/* Update SPP value */
aux1 = fff_blas_ddot( x, thisone->Kfilt->b );
r = y - aux1;
aux1 = fff_blas_ddot( xx, thisone->Kfilt->b );
rr = yy - aux1;
aux1 = fff_blas_ddot( thisone->Gspp, thisone->db );
thisone->spp += 2.0*aux1
+ _fff_glm_hermit_norm( thisone->Hspp, thisone->db, thisone->vaux ) + r*rr;
/* Update SPP gradient. Notice, we currently have: vaux == Hspp*db */
fff_vector_add ( thisone->Gspp, thisone->vaux );
fff_blas_daxpy( -.5*rr, x, thisone->Gspp );
fff_blas_daxpy( -.5*r, xx, thisone->Gspp );
/* Update SPP hessian: Hspp = Hspp + .5*(x*xx'+xx*x') */
fff_blas_dsyr2( CblasUpper, .5, x, xx, thisone->Hspp );
/* Update autocorrelation */
thisone->a = cor*thisone->spp / FFF_ENSURE_POSITIVE( thisone->Kfilt->ssd );
/* Update scale */
thisone->s2 = thisone->Kfilt->s2;
/* Refinement loop */
fff_vector_memcpy( thisone->b, thisone->Kfilt->b );
fff_matrix_memcpy( thisone->Vb, thisone->Kfilt->Vb );
iter = 1;
while ( iter < nloop ) {
aux1 = 1/(1 + FFF_SQR(thisone->a));
aux2 = 2*cor*thisone->a;
/* Update covariance */
_fff_glm_RKF_iterate_Vb( thisone->Vb, thisone->Kfilt->Vb, thisone->Hspp, aux1, aux2, thisone->Maux );
/* Update effect estimate */
fff_blas_dsymv( CblasUpper, aux2, thisone->Vb, thisone->Gspp, 0.0, thisone->db );
fff_vector_memcpy( thisone->b, thisone->Kfilt->b );
fff_vector_add( thisone->b, thisone->db );
/* Calculate SSD and SPP at current estimate */
aux1 = fff_blas_ddot( thisone->Gspp, thisone->db );
spp_ref = thisone->spp + 2*aux1
+ _fff_glm_hermit_norm( thisone->Hspp, thisone->db, thisone->vaux );
ssd_ref = thisone->Kfilt->ssd
+ _fff_glm_hermit_norm( thisone->Hssd, thisone->db, thisone->vaux );
/* Update autocorrelation */
thisone->a = cor*spp_ref / FFF_ENSURE_POSITIVE(ssd_ref);
/* Update scale */
thisone->s2 = (1-FFF_SQR(thisone->a))*ssd_ref / (double)thisone->t;
/* Counter */
iter ++;
}
return;
}
void fff_glm_KF_fit( fff_glm_KF* thisone,
const fff_vector* y,
const fff_matrix* X )
{
size_t i, offset_xi = 0;
double* yi = y->data;
fff_vector xi;
/* Init */
fff_glm_KF_reset( thisone );
xi.size = X->size2;
xi.stride = 1;
/* Tests */
if ( X->size1 != y->size )
return;
/* Loop */
for( i=0; i<y->size; i++, yi+=y->stride, offset_xi+=X->tda ) {
/* Get the i-th row of the design matrix */
xi.data = X->data + offset_xi;
/* Iterate the Kalman filter */
fff_glm_KF_iterate( thisone, *yi, &xi );
}
/* DOF */
thisone->dof = (double)(y->size - X->size2);
thisone->s2_cor = ((double)y->size/thisone->dof)*thisone->s2;
return;
}
void fff_glm_RKF_fit( fff_glm_RKF* thisone,
unsigned int nloop,
const fff_vector* y,
const fff_matrix* X )
{
size_t i, offset_xi = 0;
double* yi = y->data;
fff_vector xi, xxi;
double yyi = 0.0;
unsigned int nloop_actual = 1;
/* Init */
fff_glm_RKF_reset( thisone );
xi.size = X->size2;
xi.stride = 1;
xxi.size = X->size2;
xxi.stride = 1;
xxi.data = NULL;
/* Tests */
if ( X->size1 != y->size )
return;
/* Loop */
for( i=0; i<y->size; i++, yi+=y->stride, offset_xi+=X->tda ) {
/* Get the i-th row of the design matrix */
xi.data = X->data + offset_xi;
/* Refinement loop only needed at the last time frame */
if ( i == (y->size-1) )
nloop_actual = nloop;
/* Iterate the refined Kalman filter */
fff_glm_RKF_iterate( thisone, nloop_actual, *yi, &xi, yyi, &xxi );
/* Copy current time values */
yyi = *yi;
xxi.data = xi.data;
}
/* DOF */
thisone->dof = (double)(y->size - X->size2);
thisone->s2_cor = ((double)y->size/thisone->dof)*thisone->s2;
return;
}
/* Compute: Vb = aux1 * ( Id + aux1*aux2*Vb0*Hspp ) * Vb0
This corresponds to a simplification as the exact update formula would be:
Vb = aux1 * pinv( eye(p) - aux1*aux2*Vbd*He ) * Vbd
*/
static void _fff_glm_RKF_iterate_Vb( fff_matrix* Vb, const fff_matrix* Vb0, const fff_matrix* Hspp,
double aux1, double aux2, fff_matrix* Maux )
{
fff_blas_dsymm ( CblasLeft, CblasUpper, 1.0, Hspp, Vb0, 0.0, Maux ); /** Maux == Hspp*Vb0 **/
fff_matrix_memcpy( Vb, Vb0 );
fff_blas_dgemm( CblasNoTrans, CblasNoTrans, FFF_SQR(aux1)*aux2, Vb0, Maux, aux1, Vb );
return;
}
/* Static function to compute the Hermitian norm: x'*A*x for a
positive symmetric matrix A. The matrix-vector product A*x is
output in the auxiliary vector, vaux.
*/
static double _fff_glm_hermit_norm( const fff_matrix* A, const fff_vector* x, fff_vector* vaux )
{
double norm = 0.0;
fff_blas_dsymv( CblasUpper, 1.0, A, x, 0.0, vaux );
norm = fff_blas_ddot( x, vaux );
return FFF_MAX( norm, 0.0 );
}
|