File: fff_matrix.c

package info (click to toggle)
nipy 0.6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,352 kB
  • sloc: python: 39,115; ansic: 30,931; makefile: 210; sh: 93
file content (354 lines) | stat: -rw-r--r-- 7,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#include "fff_base.h"
#include "fff_matrix.h"

#include <stdlib.h>
#include <string.h>
#include <errno.h>

fff_matrix* fff_matrix_new(size_t size1, size_t size2)
{
  fff_matrix* thisone;

  thisone = (fff_matrix*)calloc(1, sizeof(fff_matrix));
  if (thisone == NULL) {
    FFF_ERROR("Allocation failed", ENOMEM);
    return NULL;
  }

  thisone->data = (double*)calloc(size1*size2, sizeof(double));
  if (thisone->data == NULL)
    FFF_ERROR("Allocation failed", ENOMEM);

  thisone->size1 = size1;
  thisone->size2 = size2;
  thisone->tda = size2;
  thisone->owner = 1;

  return thisone;
}


void fff_matrix_delete(fff_matrix* thisone)
{
  if (thisone->owner)
    if (thisone->data != NULL)
      free(thisone->data);
  free(thisone);

  return;
}

/* View */
fff_matrix fff_matrix_view(const double* data, size_t size1, size_t size2, size_t tda)
{
  fff_matrix A;

  A.size1 = size1;
  A.size2 = size2;
  A.tda = tda;
  A.owner = 0;
  A.data = (double*)data;

  return A;
}

/* Get element */
double fff_matrix_get (const fff_matrix * A, size_t i, size_t j)
{
  return(A->data[i*A->tda + j]);
}

/* Set element */
void fff_matrix_set (fff_matrix * A, size_t i, size_t j, double a)
{
  A->data[i*A->tda + j] = a;
  return;
}

/* Set all elements */
void fff_matrix_set_all (fff_matrix * A, double a)
{
  size_t i, j, rA;
  double *bA;
  for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
    bA = A->data + rA;
    for(j=0; j<A->size2; j++, bA++)
      *bA = a;
  }
  return;
}

/* Set all diagonal elements to a, others to zero */
void fff_matrix_set_scalar (fff_matrix * A, double a)
{
  size_t i, j, rA;
  double *bA;
  for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
    bA = A->data + rA;
    for(j=0; j<A->size2; j++, bA++) {
      if (j == i)
	*bA = a;
      else
	*bA = 0.0;
    }
  }
  return;
}

/* Global scaling */
void fff_matrix_scale (fff_matrix * A, double a)
{
  size_t i, j, rA;
  double *bA;
  for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
    bA = A->data + rA;
    for(j=0; j<A->size2; j++, bA++)
      *bA *= a;
  }
  return;
}

/* Add constant */
void fff_matrix_add_constant (fff_matrix * A, double a)
{
  size_t i, j, rA;
  double *bA;
  for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
    bA = A->data + rA;
    for(j=0; j<A->size2; j++, bA++)
      *bA += a;
  }
  return;
}

/* Row view */
fff_vector fff_matrix_row(const fff_matrix* A, size_t i)
{
  fff_vector x;
  x.size = A->size2;
  x.stride = 1;
  x.owner = 0;
  x.data = A->data + i*A->tda;
  return x;
}

/* Column view */
fff_vector fff_matrix_col(const fff_matrix* A, size_t j)
{
  fff_vector x;
  x.size = A->size1;
  x.stride = A->tda;
  x.owner = 0;
  x.data = A->data + j;
  return x;
}

/* Diagonal view */
fff_vector fff_matrix_diag(const fff_matrix* A)
{
  fff_vector x;
  x.size = FFF_MIN(A->size1, A->size2);
  x.stride = A->tda + 1;
  x.owner = 0;
  x.data = A->data;
  return x;
}

/* Block view */
fff_matrix fff_matrix_block(const fff_matrix* A,
			    size_t imin, size_t nrows,
			    size_t jmin, size_t ncols)
{
  fff_matrix Asub;
  Asub.size1 = nrows;
  Asub.size2 = ncols;
  Asub.tda = A->tda;
  Asub.owner = 0;
  Asub.data = A->data + jmin + imin*A->tda;
  return Asub;
}



/* Row copy */
void fff_matrix_get_row (fff_vector * x, const fff_matrix * A, size_t i)
{
  fff_vector xc = fff_matrix_row(A, i);
  fff_vector_memcpy(x, &xc);
  return;
}

/* Column copy */
void fff_matrix_get_col (fff_vector * x, const fff_matrix * A, size_t j)
{
  fff_vector xc = fff_matrix_col(A, j);
  fff_vector_memcpy(x, &xc);
  return;
}

/* Diag copy */
void fff_matrix_get_diag (fff_vector * x, const fff_matrix * A)
{
  fff_vector xc = fff_matrix_diag(A);
  fff_vector_memcpy(x, &xc);
  return;
}

/* Set row */
void fff_matrix_set_row (fff_matrix * A, size_t i, const fff_vector * x)
{
  fff_vector xc = fff_matrix_row(A, i);
  fff_vector_memcpy(&xc, x);
  return;
}

/* Set column */
void fff_matrix_set_col (fff_matrix * A, size_t j, const fff_vector * x)
{
  fff_vector xc = fff_matrix_col(A, j);
  fff_vector_memcpy(&xc, x);
  return;
}

/* Set diag */
void fff_matrix_set_diag (fff_matrix * A, const fff_vector * x)
{
  fff_vector xc = fff_matrix_diag(A);
  fff_vector_memcpy(&xc, x);
  return;
}

/** Methods involving two matrices **/

#define CHECK_SIZE(A,B)						\
  if ((A->size1) != (B->size1) || (A->size2 != B->size2))		\
    FFF_ERROR("Matrices have different sizes", EDOM)

#define CHECK_TRANSPOSED_SIZE(A,B)					\
  if ((A->size1) != (B->size2) || (A->size2 != B->size1))		\
    FFF_ERROR("Incompatible matrix sizes", EDOM)

/* Copy B in A */
void fff_matrix_memcpy (fff_matrix * A, const fff_matrix * B)
{
  CHECK_SIZE(A, B);

   /* If both matrices are contiguous in memory, use memcpy, otherwise
      perform a loop */
  if ((A->tda == A->size2) && (B->tda == B->size2))
    memcpy((void*)A->data, (void*)B->data, A->size1*A->size2*sizeof(double));
  else {
    size_t i, j, rA, rB;
    double *bA, *bB;
    for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
      bA = A->data + rA;
      bB = B->data + rB;
      for(j=0; j<A->size2; j++, bA++, bB++)
	*bA = *bB;
    }
  }

  return;
}


/*
  Transpose a matrix: A = B**t. A needs be preallocated

  This is equivalent to turning the matrix in
  Fortran convention (column-major order) if initially in C convention
  (row-major order), and the other way round.
*/
void fff_matrix_transpose(fff_matrix* A, const fff_matrix* B)
{
  size_t i, j, rA, rB;
  double *bA, *bB;
  CHECK_TRANSPOSED_SIZE(A, B);
  for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda) {
    bA = A->data + rA;
    bB = B->data + i;
    for(j=0; j<A->size2; j++, bA++, bB+=B->tda)
      *bA = *bB;
  }

  return;
}



/* Add two matrices */
void fff_matrix_add (fff_matrix * A, const fff_matrix * B)
{
  size_t i, j, rA, rB;
  double *bA, *bB;
  CHECK_SIZE(A, B);
  for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
    bA = A->data + rA;
    bB = B->data + rB;
    for(j=0; j<A->size2; j++, bA++, bB++)
      *bA += *bB;
  }
  return;
}

/* Compute: A = A - B */
void fff_matrix_sub (fff_matrix * A, const fff_matrix * B)
{
  size_t i, j, rA, rB;
  double *bA, *bB;
  CHECK_SIZE(A, B);
  for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
    bA = A->data + rA;
    bB = B->data + rB;
    for(j=0; j<A->size2; j++, bA++, bB++)
      *bA -= *bB;
  }
  return;
}

/* Element-wise multiplication */
void fff_matrix_mul_elements (fff_matrix * A, const fff_matrix * B)
{
  size_t i, j, rA, rB;
  double *bA, *bB;
  CHECK_SIZE(A, B);
  for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
    bA = A->data + rA;
    bB = B->data + rB;
    for(j=0; j<A->size2; j++, bA++, bB++)
      *bA *= *bB;
  }
  return;
}


/* Element-wise division */
void fff_matrix_div_elements (fff_matrix * A, const fff_matrix * B)
{
  size_t i, j, rA, rB;
  double *bA, *bB;
  CHECK_SIZE(A, B);
  for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
    bA = A->data + rA;
    bB = B->data + rB;
    for(j=0; j<A->size2; j++, bA++, bB++)
      *bA /= *bB;
  }
  return;
}


long double fff_matrix_sum(const fff_matrix* A)
{
  long double sum = 0.0;
  fff_vector a;
  double *buf;
  size_t i;

  for(i=0, buf=A->data; i<A->size1; i++, buf+=A->tda) {
    a = fff_vector_view(buf, A->size2, 1);
    sum += fff_vector_sum(&a);
  }

  return sum;
}