1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
#include "fff_base.h"
#include "fff_matrix.h"
#include <stdlib.h>
#include <string.h>
#include <errno.h>
fff_matrix* fff_matrix_new(size_t size1, size_t size2)
{
fff_matrix* thisone;
thisone = (fff_matrix*)calloc(1, sizeof(fff_matrix));
if (thisone == NULL) {
FFF_ERROR("Allocation failed", ENOMEM);
return NULL;
}
thisone->data = (double*)calloc(size1*size2, sizeof(double));
if (thisone->data == NULL)
FFF_ERROR("Allocation failed", ENOMEM);
thisone->size1 = size1;
thisone->size2 = size2;
thisone->tda = size2;
thisone->owner = 1;
return thisone;
}
void fff_matrix_delete(fff_matrix* thisone)
{
if (thisone->owner)
if (thisone->data != NULL)
free(thisone->data);
free(thisone);
return;
}
/* View */
fff_matrix fff_matrix_view(const double* data, size_t size1, size_t size2, size_t tda)
{
fff_matrix A;
A.size1 = size1;
A.size2 = size2;
A.tda = tda;
A.owner = 0;
A.data = (double*)data;
return A;
}
/* Get element */
double fff_matrix_get (const fff_matrix * A, size_t i, size_t j)
{
return(A->data[i*A->tda + j]);
}
/* Set element */
void fff_matrix_set (fff_matrix * A, size_t i, size_t j, double a)
{
A->data[i*A->tda + j] = a;
return;
}
/* Set all elements */
void fff_matrix_set_all (fff_matrix * A, double a)
{
size_t i, j, rA;
double *bA;
for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
bA = A->data + rA;
for(j=0; j<A->size2; j++, bA++)
*bA = a;
}
return;
}
/* Set all diagonal elements to a, others to zero */
void fff_matrix_set_scalar (fff_matrix * A, double a)
{
size_t i, j, rA;
double *bA;
for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
bA = A->data + rA;
for(j=0; j<A->size2; j++, bA++) {
if (j == i)
*bA = a;
else
*bA = 0.0;
}
}
return;
}
/* Global scaling */
void fff_matrix_scale (fff_matrix * A, double a)
{
size_t i, j, rA;
double *bA;
for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
bA = A->data + rA;
for(j=0; j<A->size2; j++, bA++)
*bA *= a;
}
return;
}
/* Add constant */
void fff_matrix_add_constant (fff_matrix * A, double a)
{
size_t i, j, rA;
double *bA;
for(i=0, rA=0; i<A->size1; i++, rA+=A->tda) {
bA = A->data + rA;
for(j=0; j<A->size2; j++, bA++)
*bA += a;
}
return;
}
/* Row view */
fff_vector fff_matrix_row(const fff_matrix* A, size_t i)
{
fff_vector x;
x.size = A->size2;
x.stride = 1;
x.owner = 0;
x.data = A->data + i*A->tda;
return x;
}
/* Column view */
fff_vector fff_matrix_col(const fff_matrix* A, size_t j)
{
fff_vector x;
x.size = A->size1;
x.stride = A->tda;
x.owner = 0;
x.data = A->data + j;
return x;
}
/* Diagonal view */
fff_vector fff_matrix_diag(const fff_matrix* A)
{
fff_vector x;
x.size = FFF_MIN(A->size1, A->size2);
x.stride = A->tda + 1;
x.owner = 0;
x.data = A->data;
return x;
}
/* Block view */
fff_matrix fff_matrix_block(const fff_matrix* A,
size_t imin, size_t nrows,
size_t jmin, size_t ncols)
{
fff_matrix Asub;
Asub.size1 = nrows;
Asub.size2 = ncols;
Asub.tda = A->tda;
Asub.owner = 0;
Asub.data = A->data + jmin + imin*A->tda;
return Asub;
}
/* Row copy */
void fff_matrix_get_row (fff_vector * x, const fff_matrix * A, size_t i)
{
fff_vector xc = fff_matrix_row(A, i);
fff_vector_memcpy(x, &xc);
return;
}
/* Column copy */
void fff_matrix_get_col (fff_vector * x, const fff_matrix * A, size_t j)
{
fff_vector xc = fff_matrix_col(A, j);
fff_vector_memcpy(x, &xc);
return;
}
/* Diag copy */
void fff_matrix_get_diag (fff_vector * x, const fff_matrix * A)
{
fff_vector xc = fff_matrix_diag(A);
fff_vector_memcpy(x, &xc);
return;
}
/* Set row */
void fff_matrix_set_row (fff_matrix * A, size_t i, const fff_vector * x)
{
fff_vector xc = fff_matrix_row(A, i);
fff_vector_memcpy(&xc, x);
return;
}
/* Set column */
void fff_matrix_set_col (fff_matrix * A, size_t j, const fff_vector * x)
{
fff_vector xc = fff_matrix_col(A, j);
fff_vector_memcpy(&xc, x);
return;
}
/* Set diag */
void fff_matrix_set_diag (fff_matrix * A, const fff_vector * x)
{
fff_vector xc = fff_matrix_diag(A);
fff_vector_memcpy(&xc, x);
return;
}
/** Methods involving two matrices **/
#define CHECK_SIZE(A,B) \
if ((A->size1) != (B->size1) || (A->size2 != B->size2)) \
FFF_ERROR("Matrices have different sizes", EDOM)
#define CHECK_TRANSPOSED_SIZE(A,B) \
if ((A->size1) != (B->size2) || (A->size2 != B->size1)) \
FFF_ERROR("Incompatible matrix sizes", EDOM)
/* Copy B in A */
void fff_matrix_memcpy (fff_matrix * A, const fff_matrix * B)
{
CHECK_SIZE(A, B);
/* If both matrices are contiguous in memory, use memcpy, otherwise
perform a loop */
if ((A->tda == A->size2) && (B->tda == B->size2))
memcpy((void*)A->data, (void*)B->data, A->size1*A->size2*sizeof(double));
else {
size_t i, j, rA, rB;
double *bA, *bB;
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
bA = A->data + rA;
bB = B->data + rB;
for(j=0; j<A->size2; j++, bA++, bB++)
*bA = *bB;
}
}
return;
}
/*
Transpose a matrix: A = B**t. A needs be preallocated
This is equivalent to turning the matrix in
Fortran convention (column-major order) if initially in C convention
(row-major order), and the other way round.
*/
void fff_matrix_transpose(fff_matrix* A, const fff_matrix* B)
{
size_t i, j, rA, rB;
double *bA, *bB;
CHECK_TRANSPOSED_SIZE(A, B);
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda) {
bA = A->data + rA;
bB = B->data + i;
for(j=0; j<A->size2; j++, bA++, bB+=B->tda)
*bA = *bB;
}
return;
}
/* Add two matrices */
void fff_matrix_add (fff_matrix * A, const fff_matrix * B)
{
size_t i, j, rA, rB;
double *bA, *bB;
CHECK_SIZE(A, B);
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
bA = A->data + rA;
bB = B->data + rB;
for(j=0; j<A->size2; j++, bA++, bB++)
*bA += *bB;
}
return;
}
/* Compute: A = A - B */
void fff_matrix_sub (fff_matrix * A, const fff_matrix * B)
{
size_t i, j, rA, rB;
double *bA, *bB;
CHECK_SIZE(A, B);
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
bA = A->data + rA;
bB = B->data + rB;
for(j=0; j<A->size2; j++, bA++, bB++)
*bA -= *bB;
}
return;
}
/* Element-wise multiplication */
void fff_matrix_mul_elements (fff_matrix * A, const fff_matrix * B)
{
size_t i, j, rA, rB;
double *bA, *bB;
CHECK_SIZE(A, B);
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
bA = A->data + rA;
bB = B->data + rB;
for(j=0; j<A->size2; j++, bA++, bB++)
*bA *= *bB;
}
return;
}
/* Element-wise division */
void fff_matrix_div_elements (fff_matrix * A, const fff_matrix * B)
{
size_t i, j, rA, rB;
double *bA, *bB;
CHECK_SIZE(A, B);
for(i=0, rA=0, rB=0; i<A->size1; i++, rA+=A->tda, rB+=B->tda) {
bA = A->data + rA;
bB = B->data + rB;
for(j=0; j<A->size2; j++, bA++, bB++)
*bA /= *bB;
}
return;
}
long double fff_matrix_sum(const fff_matrix* A)
{
long double sum = 0.0;
fff_vector a;
double *buf;
size_t i;
for(i=0, buf=A->data; i<A->size1; i++, buf+=A->tda) {
a = fff_vector_view(buf, A->size2, 1);
sum += fff_vector_sum(&a);
}
return sum;
}
|